COMPARATIVE ASSESSMENT OF RENEWABLE SOURCES FOR CRITICAL FACILITIES OF DECENTRALIZED SUPPLY

1
National Joint Stock Company "Naftogaz of Ukraine", Pukhov Institute for Modelling in Energy Engineering
2
Lviv State University of Life Safety, Ukraine
3
Lviv Politechnic National University
4
Lviv Polytechnic National University
5
Lviv Politechnic National University

The concept of energy supply is widely discussed, but there is no consensus on ways of its provision. In the current research, we have provided an analysis of available combinations of renewable sources for decentral- ized energy supply. It is important for critical facilities on territorial society and district levels. The article considers the safety of the technical component of a complex organizational and technical system by studying the functional relationship between the parameters: temperature, time, active power, hydrogen participation, etc. The idea of the work is to evaluate the ratios of generating capacities of different types of renewable sources in complex systems and select highly efficient technologies and energy means for decentralized energy supply.

  1. Hickmann, T., Widerberg, O., Lederer, M., & Pattberg, P. (2021). The United Nations Framework Convention on Climate Change Secretariat as an orchestrator in global climate policymaking. International Review of Adminis- trative Sciences, 87(1), 21–38. https://www.un.org › con- ferences › energy2021
  2. IRENA (2022), World Energy Transitions Outlook 2022:1.5 °C Pathway, International Renewable Energy Agency, Abu Dhabi. Available for download: https://www.irena. org/Digital-Report/World-Energy-Transitions-Outlook- 2022#page-1
  3. Borys Pokhodenko (2023). Review and comparative anal- ysis of energy security concepts of the European Union and Ukraine. The Journal of V. N. Karazin Kharkiv Na- tional University. Series: International Relations. Eco- nomics. Country Studies. Tourism, (17), 56–79. https://doi.org/10.26565/2310-9513-2023-17-06 .
  4. Bert Kruyt, D. P. van Vuuren, H. J. M. de Vries, H. Gro- enenberg, Indicators for energy security, Energy Policy, Vol. 37, Iss. 6, 2009, 2166–2181, https://doi.org/10.1016/ j.enpol.2009.02.006.
  5. Richard Holden, Dimitri V. Val, Roland Burkhard, Sarah Nodwell, A network flow model for interdependent infra- structures at the local scale, Safety Science, Vol. 53, 2013, 51–60. https://doi.org/10.1016/j.ssci.2012.08.013
  6. Fatma S. Hafez, Bahaaeddin Sa'di, M. Safa-Gamal, Y.H. Taufiq-Yap, Moath Alrifaey, Mehdi Seyedmahmoudian, Alex Stojcevski, Ben Horan, Saad Mekhilef, Energy Effi- ciency in Sustainable Buildings: A Systematic Review with Taxonomy, Challenges, Motivations, Methodological Aspects, Recommendations, and Pathways for Future Re- search, Energy Strategy Reviews, Vol. 45, 2023, 101013. https://doi.org/10.1016/j.esr.2022.101013
  7.  C. Zhang, C. Cui, Y. Zhang, J. Yuan, Y. Luo, W. Gang, A review of renewable energy assessment methods in green building and green neighborhood rating systems, Energy Build, 195 (2019) 68–81. https://doi.org/10.1016/ j.enbuild.2019.04.040
  8. Ranganathan R et al. (2023). A comparative study of re- newable energy sources for power generation in rural ar- eas ICSERET-2023, E3S Web of Conferences 387, 05011. https://doi.org/10.1051/e3sconf/202338705011
  9. Ghania et al.: ΑReliability Study of Renewable Energy Resources and their Integration with Utility Grids Engi- neering, Technology & Applied Science Research, Vol. 12, No. 5, 2022, 9078–9086. https://doi.org/10.48084/ etasr.5090
  10. Fenerich F. C. et al. Energy efficiency in industrial envi- ronments: an updated review and a new research agenda, Revista Gestão e Secretariado (GeSec), São Paulo, SP, Vol. 14, No. 3, 2023, 3319–3347. http://doi.org/10.7769/ gesec.v14i3.1802
  11. Rehak D., Markuci J., Hromada M., Barcova K. Quantita- tive evaluation of the synergistic effects of failures in a critical infrastructure system, International Journal of Critical Infrastructure Protection, Vol. 14, 2016,          3–17. https://doi.org/10.1016/j.ijcip.2016.06.002 .
  12. WUTMARC   HYDROGEN   STATIONS.   URL:https://h2.wutmarc.ua
  13. Ukraine and the EU concluded a strategic partnership in the fields of green hydrogen and biogas. URL: https://ecopolitic. com.ua/ua/news/ukraina-ta-ies-uklali-strategichne- partnerstvo-u-sferah-zelenogo-vodnju-ta-biogazu/
  14. Naftogaz signs green hydrogen “H2EU+Store” MOU on the transport of hydrogen produced in Ukraine to Germany. URL: https://www.naftogaz.com/news/green-hydrogen- ukraine-germany
  15. Choi, Y. Renewable Energy Systems: Optimal Planning and Design. Appl. Sci. 2023, 13, 3986. https://doi.org/10.3390/app13063986
  16. Ukraine’s first green hydrogen plant to be built in Lviv region. URL: https://zaxid.net/pershiy_zeleniy_n1525661
  17. Replace-gas-in-Ukrainian-GTS-with-green-hydrogen.URL: http://surl.li/nsehr
  18. Merten, F., Scholz, A., Krüger, C., Heck, S., Girard, Y., Mecke, M., & Goerge, M. (2020). Bewertung der Vorund Nachteile von Wasserstoffimporten im Vergleich zur heimischen Produktion, Studie für den Landesverband Erneuerbare Energien NRW e. V., Wuppertal Institut & DIW Econ. https://doi.org/10.48506/opus-7948
  19. Glenk, G., & Reichelstein, S. (2019). Economics of con- verting renewable power to hydrogen. Nature Energy, 4 (3), 216–222. https://doi.org/10.1038/s41560-019-0326-1
  20. G. Golub, M. Tregub, A. Holubenko, V. Chuba, M. Te- reshchuk, Determining of the influence of reactor parame- ters on the uniformity of mixing substrate components. Eastern-European Journal of Enterprise Technologies, 2020, 6(7–108), 60–70 http://journals.uran.ua/ ee- jet/article/view/217159
  21. V. Zubenko, O. Epik, V. Antonenko. Development and optimization of fast ablative pyrolysis technology in Ukraine. Energetika, 2018, T. 64. No. 1, 1–10. https://kriger.com.ua/en/projects/
  22. L. S. Chervinsky, “The ways and effects of ultraviolet radiation on the human and animal body”, Proc. SPIE 11363, Tissue Optics and Photonics, 113630I (2 April 2020). DOI: 10.1117/12.2552719. https://www.scopus. com/record/display.uri?eid=2-s2.0- 85087085997&origin=resultslist&sort=plf-f www.altek.ua
  23. Y. V. Tascheiev, S. V. Voitko, O. O. Trofimenko, O. O. Repkin, T. S. Kudrya. Global trends in the development of hydrogen technologies in industry. BusinessInform, 2020. No. 8, 103–114. https://doi.org/10.32983/2222-4459-2020-8-103-114
  24. V. M. Karpenko, Yu. P. Starodub. Research of geothermal energy parameters in deep wells JGD. 2017; Vol. 1(22) 2017, No. 1(22) 2017, 85–97. https://doi.org/ 10.23939/jgd2017.01.085
  25. T. G. Karayiannis, et. al. (2022), “Energy availability from deep geothermal wells using coaxial heat exchang- ers”. 19th International Conference on Sustainable Energy Technologies; 16 Aug 2022; Istanbul, Turkey; Sustainable Energy Technologies, 1–10. URL: http://bura.brunel. ac.uk/handle/2438/25108 Energy Technologies, 1–10. URL: http://bura.brunel. ac.uk/handle/2438/25108
  26. T. Kujawa, T. Nowak, W. Stachel, Aleksander. (2006). Utilization of existing deep geological wells for acquisi- tion of geothermal energy. Energy, 31, 650–664. https://doi.org/10.1016/j.energy.2005.05.002 .
  27. A. Baroutaji, T. Wiberforce, M. Ramadan, A. Ghani Olabi. A comprehensive investigation of hydrogen and fuel technology in the aviation and aerospace sectors. Renewable and Sus- tainable Energy Reviews, Vol. 106, May 2019, 31– 40. DOI: 10.1016/j.rser.2019.02.022
  28. V. Karpenko, Yu. Starodub, A. Havrys. Computer Modeling in the Application to Geothermal Engineering. – Advances in Civil Engineering, Vol. 2021, Article ID 6619991, 23 p., 2021. https://doi.org/10.1155/2021/ 6619991
  29. A.-J. Perea-Moreno, Q. Hernandez-Escobedo, The Sus- tainable City: Advances in Renewable Energy and Energy Saving Systems. Energies 2021, 14, 8382. https://doi.org/ 10.3390/en14248382
  30. P. Gasser, P. Lustenberger, M. Cinelli, W. Kim, M. Spa- da, P. Burgherr, S. Hirschberg, B. Stojadinovic, T. Sun (2019): A review on resilience assessment of energy sys- tems, sustainable and resilient infrastructure to link to this article. https://doi.org/10.1080/23789689.2019. 1610600
  31. Y. Starodub, V. Karpenko, A. Havrys, and D. Behen, “Development of the methodology of energy and envi- ronmental safety of Ukraine based on own geother- mic”, GJ,  Vol.  45,  No.  4,  Aug.  2023.  DOI: https://doi.org/10.24028/gj.v45i4.286289
  32. R. Holden, D. Val, R. Burkhard, S. Nodwell, A network flow model for interdependent infrastructures at the local scale, Safety Science, Vol. 53, 2013, 51–60. https://doi.org/ 10.1016/j.ssci.2012.08.013