Вплив ультразвукового оброблення на властивості оксидної ZnO-MoO3 системи

Автори: 
Olena Sachuk, Natalya Kopachevska, Lubov Kuznetsova, Valery Zazhigalov, Volodymyr Starchevskyy

Olena Sachuk-1, Natalya Kopachevska-1, Lubov Kuznetsova-1, Valery Zazhigalov-1, Volodymyr Starchevskyy-2

  1. Institute for sorption and problems of endoecology of NAS of Ukraine 13, General Naumov St., 03164 Kyiv, Ukraine; 
  2. Lviv Polytechnic National University 12, S.Bandery St., 79013 Lviv, Ukraine zazhigal@ispe.kiev.ua

Досліджено вплив ультразвукового оброблення (УЗО) оксидної цинк-молібденової системи ZnO-MoO3 (Zn:Mo=15:85, 25:75, 50:50, 75:25) на її фізико-хімічні властивості. Методами РФА, ІЧ-ФП та ДТА показано, що таке оброблення приводить до утворення субоксидів молібдену (фаз Магнелі складу Мо4О11 і Мо8О23) та молібдатів цинку: α-ZnMoO4, ZnMo8O10. Встановлено специфічність впливу співвідношення реагентів на формування цих сполук. Показано, в результаті ультразвукового оброблення відбувається зміна поруватої структури композицій – з непоруватої суміші оксидів утворюються композити з наявністю мікро- та мезопор, що веде до збільшення питомої поверхні зразків та суттєвого зменшення розміру частинок.

[1] Queeney K., Friend C.: J. Phys. Chem., 2000, 104, 409. https://doi.org/10.1021/jp991994m
[2] Bacaksiz E., Parlak M., Tomakin M. et al.: J. Alloy. Compd., 2008, 466, 447. https://doi.org/10.1016/j.jallcom.2007.11.061
[3] Wang J., Cao J., Fang B. et al.: Mater. Lett., 2005, 59, 1405. https://doi.org/10.1016/j.matlet.2004.11.062
[4] Rumyantsev R., Il’in A., Pazukhin I.: Theor. Exp. Chem., 2011, 47, 41. https://doi.org/10.1007/s11237-011-9182-1
[5] Iglesia E., Spivey J., Fleisch T. (Eds.): Studies in Surface Science and Catalysis. Elsevier Science B.V., Amsterdam 2001. 
[6] Beale A., Sankar G.: Chem. Mater., 2013, 15, 146. https://doi.org/10.1021/cm020463z
[7] Dubovik A., Vostretsov Y., Grinyov B. et al.: Acta Phys. Pol. A, 2010, 117, 15. https://doi.org/10.12693/APhysPolA.117.15
[8] Keereeta Y., Thongtem T., Thongtem S.: Superlattice Microst., 2014, 69, 253. https://doi.org/10.1016/j.spmi.2014.02.011
[9] Cavalcante L., Sczancoski J., Siu Li M. et al.: Colloid Surface A, 2012, 396, 346. https://doi.org/10.1016/j.colsurfa.2011.12.021
[10] Chambon S., Lionel D., Lahaye M. et al.: Materials, 2012, 5, 2521. https://doi.org/10.3390/ma5122521
[11] Liang Y., Liu H., Yang G.: Cryst. Growth Des., 2012, 12, 4487. https://doi.org/10.1021/cg3006629
[12] Peng C., Gao L., Yang S., Sun J.: Chem. Commun., 2008, 5601. https://doi.org/10.1039/b812033a
[13] Omran Z., Farid T., El Bellihi A.: Commun. Fac. Sci. Univ. Ank. Series B., 1999, 45, 9.
[14] Ryu J., Koo S.-M., Yoon Y.-W.: Mater. Lett., 2006, 60, 1702. https://doi.org/10.1016/j.matlet.2005.12.018
[15] Zazhigalov V., Sachuk E., Kopachevskaya N. et al.: Theor. Exp. Chem., 2016, 52, 96. https://doi.org/10.1007/s11237-016-9456-8
[16] BoldyrevV.: Thermochim. Acta., 1987, 110, 303. https://doi.org/10.1016/0040-6031(87)88239-4
[17] Bang J., Suslick K.: Adv. Mater., 2010, 22, 1039. https://doi.org/10.1002/adma.200904093
[18] Shevchuk L., Starchevskyy V.: Kavitatsiya. Fizychni, Khimichni, Biologichni i Technologichni Aspekty. Lviv 2014.
[19] Zazhigalov V., Sydorchuk S., Khalameida V., Starchevskyy V.: Sonokhimiya dlya Zahystu Dovkillya: Syntez Katalizatoriv ta Zmenshennya Zabrudnen. Lviv 2016.
[20] Bhanvase B., Patel M., Sonawane S., Pandit A.: Ultrason. Sonochem., 2016, 18, 311. 
https://doi.org/10.1016/j.ultsonch.2015.08.007
[21] Bhanvase B., Kadam V., Rode T. et al.: Int. J. Nanosci., 2015, 14, 1550014. https://doi.org/10.1142/S0219581X15500143
[22] Patel M., Bhanvase B., Sonawane S.: Ultrason. Sonochem., 2013, 20, 906. https://doi.org/10.1016/j.ultsonch.2012.11.008
[23] Karekar S., Bhanvase B., Sonawane S. et al.: Chem. Eng. Proc., 2015, 87, 51. https://doi.org/10.1016/j.cep.2014.11.010
[24] Smith R. and Rohrer G.: J. Solid State Chem., 1996, 124, 104. https://doi.org/10.1006/jssc.1996.0213
[25] Dang J., Zhang G.-H., Chou K.-C.: High Temp. Mater. Proc., 2014, 33, 305. https://doi.org/10.1515/htmp-2013-0061
[26] Klinbumrung A., Thongtem T.: J. Nanomat., 2012, 10, 1. https://doi.org/10.1155/2012/930763
[27] Collongues R.: La non-stoechiometric. Masson et Cie, Editeurs, Paris 1971.
[28] ChiangT., YehH.: Materials, 2013, 6, 4609. https://doi.org/10.3390/ma6104609
[29] Stoyanova A., Iordanova R., Mancheva M., Dimitriev Y.: J. Optoelectron. Adv. M., 2009, 11, 1127.
[30] Dimitriev Y., Iordanova R. et al.: Eur. J. Glass Sci. Technol. B., 2012, 53, 254.
[31] Farag K., Hanafi Z., Dawy M. et al.: Canad. J. Pure Appl. Sci., 2010, 4, 1303.
[32] Gruber H., Krautz E. et al.: Phys. Stat. Sol. A, 1986, 98, 297. https://doi.org/10.1002/pssa.2210980134