Вплив попередньо приготовлених і очищених багатостінних вуглецевих нанотрубок на рідкофазне аеробне окиснення вуглеводнів

2021;
: cc. 479–485
1
Institute of Catalysis & Inorganic Chemistry, Azerbaijan National Academy of Sciences
2
Institute of Catalysis & Inorganic Chemistry, Azerbaijan National Academy of Sciences
3
Azerbaijan State University of Oil and Industry, Ministry of Education
4
Institute of Catalysis & Inorganic Chemistry, Azerbaijan National Academy of Sciences
5
Institute of Catalysis & Inorganic Chemistry, Azerbaijan National Academy of Sciences

Представлені прості кінетичні підходи до вивчення впливу багатостінних вуглецевих нанотрубок (MWCNT) на аеробне окиснення вуглеводнів та запропоновано реальні прийнятні механізми процесу. Як модель використано аеробне рідкофазне низькотемпературне окиснення етилбензену у присутності багатостінних вуглецевих нанотрубок. За допомогою кінетичного аналізу визначено, що каталітична дія пов’язана з наявністю сполук заліза у внутрішніх каналах MWCNT. Ці сполуки ідентифіковані як карбіди заліза, що провокують розкладання етилбензенгідропероксиду і тим самим пригнічують конкурентне додавання алкілпероксидних радикалів до клітин нановуглецю. Встановлено, що реакція протікає в автокаталітичному режимі. Показано, що суперечливі висновки щодо впливу вуглецевих нанотрубок на ланцюговий оксидаційний процес, які існують у літературі, пов'язані з відсутністю контролю над природою та вмістом металевих домішок у каналах нанотрубок.

  1. Miners S., Rance G., Khlobystov A.: Chem. Soc. Rev., 2016, 45, 4727. https://doi.org/10.1039/C6CS00090H
  2. La Torre A., Rance G., El Harfi J. et al.: Nanoscale, 2010, 2, 1006. https://doi.org/10.1039/c0nr00035c
  3. Rance G., Solomonsz W., Khlobystov A.: Chem. Commun., 2013, 49, 1067. https://doi.org/10.1039/c2cc38035h
  4. Rance G., Marsh D., Bourne S. et al.: ACS Nano, 2010, 4, 4920. https://doi.org/10.1021/nn101287u
  5. Cornelio B., Rance G., Laronze-Cochard M. et al.: J. Mater. Chem. A, 2013, 1, 8737. https://doi.org/10.1039/c3ta11530e
  6. Cornelio B., Saunders A., Solomonsz W. et al.: J. Mater. Chem. A, 2015, 3, 3918. https://doi.org/10.1039/C4TA06953F
  7. Cherepnova Yu., Zeynalov E., Ishenko N., Abdullayev M.: Neftegazovye Tekhnologii, 2013, 6, 66.
  8. Zeynalov E., Ishenko N., Magerramova M. et al.: Neftegazovye Tekhnologii, 2016, 2, 73.
  9. Zeynalov E., Aliyeva A., Nuriyev L. et al.: Neftegazovye Tekhnologii, 2011, 6, 69.
  10. Zeynalov E., Friedrich J.., Wagner M., Hidde G.: Chem. Chem. Technol., 2015, 9, 51. https://doi.org/10.23939/chcht09.01.051
  11. Kobotaeva N., Skorokhodova T., Ryabova N.: Russ. J. Phys. Chem. A, 2015, 89, 462. https://doi.org/10.1134/S0036024415030164
  12. Yang S., Li X., Zhu W. et al.: Carbon, 2008, 46, 445. https://doi.org/10.1016/j.carbon.2007.12.006
  13. Yang S., Zhu W., Li X. et al.: Catal. Commun., 2007, 8, 2059. https://doi.org/10.1016/j.catcom.2007.04.015
  14. Yang S., Sun Y., Yang H., Wan J.: Front. Environ. Sci. Eng., 2015, 9, 436. https://doi.org/10.1007/s11783-014-0681-x
  15. Luo J., Yu H., Wang H., Peng F.: Catal. Commun., 2014, 51, 77. https://doi.org/10.1016/j.catcom.2014.03.031
  16. BuonocoreF., Trani F., Ninno D. et al.: Nanotechnology, 2007, 19, 025711. https://doi.org/10.1088/0957-4484/19/02/025711
  17. Fenoglio I., Tomatis M., Lison D. et al.: Free Radical Bio. Med., 2006, 40, 1227. https://doi.org/10.1016/j.freeradbiomed.2005.11.010
  18. Galano A.: Nanoscale, 2010, 2, 373. https://doi.org/10.1039/b9nr00364a
  19. Martínez A., Galano A.: J. Phys. Chem. C, 2010, 114, 8184. https://doi.org/10.1021/jp100168q
  20. Watts P., Fearon P., Hsu W. et al.: J. Mater. Chem., 2003, 13, 491. https://doi.org/10.1039/B211328G
  21. Martínez-Morlanes M., Castell P., Alonso P. et al.: Carbon, 2012, 50, 2442. https://doi.org/10.1016/j.carbon.2012.01.066
  22. Shi X., Jiang B., Wang J., Yang Y.: Carbon, 2012, 50, 1005. https://doi.org/10.1016/j.carbon.2011.10.003
  23. Zeynalov E., Friedrich J.: Mater. Test., 2007, 49, 265. https://doi.org/10.3139/120.100812
  24. Zeynalov E., Wagner M., Friedrich J. et al.: Chem. Chem. Technology, 2016, 10, 581. https://doi.org/10.23939/chcht10.04si.581
  25. Guadagno L., Naddeo C., Raimondo M. et al: Polym. Degrad. Stabil., 2010, 95, 1614. https://doi.org/10.1016/j.polymdegradstab.2010.05.030
  26. Zeynalov E., Nagiyev T., Friedrich J., Magerramova M.: Chapter 16 [in:] Grumezescu A. (Ed.), Fullerenes, Graphenes and Nanotubes: A Pharmaceutical Approach. Elsevier 2018, 631-681. https://doi.org/10.1016/B978-0-12-813691-1.00016-6
  27. Bocchini S., FracheA., Camino G., Claes M.: Eur. Polym. J., 2007, 43, 3222. https://doi.org/10.1016/j.eurpolymj.2007.05.012
  28. Sreekanth P., Kumar N., Kanagaraj S.:Compos. Sci. Technol., 2012, 72, 390. https://doi.org/10.1016/j.compscitech.2011.11.031
  29. Morlat-Therias S., Fanton E., Gardette J. et al.: Polym. Degrad. Stabil., 2007, 92, 1873. https://doi.org/10.1016/j.polymdegradstab.2007.06.021
  30. Shen Z., Bateman S., Wu D. et al.: Compos. Sci. Technol., 2009, 69, 239. https://doi.org/10.1016/j.compscitech.2008.10.017
  31. Liao S., Peng F., Yu H., Wang H.: Appl. Catal. A-Gen., 2014, 478, 1. https://doi.org/10.1016/j.apcata.2014.03.024
  32. Luo J., Peng F., Yu H. et al.: Chem. Cat. Chem, 2013, 5, 1578. https://doi.org/10.1002/cctc.201200603
  33. Yu H., Peng F., Tan J. et al.: Angew. Chem., 2011, 123, 4064. https://doi.org/10.1002/ange.201007932
  34. Yang X., Wang H., Li J. et al.: Chem. Eur. J., 2013, 19, 9818. https://doi.org/10.1002/chem.201300676
  35. Cao Y., Li Y., Yu H. et al.: Catal. Sci. Technol., 2015, 5, 3935. https://doi.org/10.1039/C5CY00136F
  36. Zhai Y., Zhu Z., Dong S.: Chem. Cat. Chem., 2015, 7, 2806. https://doi.org/10.1002/cctc.201500323
  37. Sun X., Wang R., Su D.: Chin. J. Catal., 2013, 34, 508. https://doi.org/10.1016/S1872-2067(11)60515-9
  38. Zeynalov E., Allen N., Salmanova N., Vishnyakov V.: J. Phys. Chem. Solid., 2019, 127, 245. https://doi.org/10.1016/j.jpcs.2018.12.031
  39. Emanuel N., Gladyshev G., Tsepalov V., Piotrovskiy K.: Testirovanie Khimicheskikh Soedineniy kak Stabilizatorov Polymernykh Materialov (preprint). Chernogolovka 1973.
  40. Gladyshev G., Tsepalov V.: Russ. Chem. Rev., 1975, 44, 1830. https://doi.org/10.1070/RC1975v044n10ABEH002381
  41. Zeynalov E., Vasnetsova O.: Kineticheskiy Skrining Ingibitorov Radikalnykh Reaksiy. Elm, Baku 1993.
  42. Zeynalov E., Allen N.: Polym. Degrad. Stabil., 2004, 85, 847. https://doi.org/10.1016/j.polymdegradstab.2004.03.021
  43. Abdullayeva S., Musayeva N., Frigeri C. et al.: J. Adv. Phys., 2015, 11, 3229. https://doi.org/10.24297/jap.v11i3.6943
  44. Emanuel N., Maizus Z., Skibida I.: Angew. Chem. Int. Edit., 1969, 8, 97. https://doi.org/10.1002/anie.196900971
  45. Potekhin V.: Osnovy Teorii Khimicheskikh Protsessov Tekhnologii Organicheskikh Veschestv i Neftepererabotki. Khimizdat, St.Petersburg 2014.
  46. Zeynalov E., Friedrich J.: Polym. Polym. Compos., 2006, 14, 779. https://doi.org/10.1177/096739110601400803
  47.  Salmanova N., Magerramova M., Agahuseynova M., Zeynalov E.: Int. Res. J. Emerg. Trends Multidisc., 2015, 1, 220.
  48. Bulgakov R., Ponomareva Y., Maslennikov S. et al.: Russ. Chem. Bull., 2005, 54, 1862. https://doi.org/10.1007/s11172-006-0049-x
  49. Galimov D., Bulgakov R., Gazeeva D.: Russ. Chem. Bull., 2011, 60, 2107. https://doi.org/10.1007/s11172-011-0323-4
  50. Sabirov D., Garipova R., Bulgakov R.: Fuller. Nanotub. Car. N., 2015, 23, 1051. https://doi.org/10.1080/1536383X.2015.1060963
  51. Yumagulova R., Medvedeva N., Yakupova L. et al.: Kinet. Catal., 2013, 54, 709. https://doi.org/10.1134/S0023158413050182
  52. Zeynalov E.: Chapter 9 [in:] Mukbaniani O., Abadi M., Tatrishvili T. (Eds.), High-Performance Polymers for Engineering-Based Composites. Apple Academic Press Inc. 2016, 103-110.
  53. Zeynalov E., Allen N., Salmanova N.: Polym. Degrad. Stabil., 2009, 94, 1183. https://doi.org/10.1016/j.polymdegradstab.2009.04.027
  54. Fiori G., Betti A., Bruzzone S., Iannaccone G.: ACS Nano, 2012, 6, 2642. https://doi.org/10.1021/nn300019b
  55. Palla P., Uppu G., Ethiraj A., Raina J.. Bull. Mater. Sci., 2016, 39, 1441. https://doi.org/10.1007/s12034-016-1285-9
  56. Aliyeva A., Nuriyev L., Zeynalov E.: Azerbaydzhanskoe Neftyanoe Khozyaystvo, 2009, 10, 47.
  57. Abbasov V., Aliyeva L., Alma H. et al.: IX International Scientific Conference "Fullerenes and Nanostructures in Condensed Matter", Belarus, Minsk 2016, 330.
  58. Afandiyeva L., Abbasov V., Aliyeva L. et al.: Processes of Petrochemistry and Oil-Refining 2016, 17, 302.
  59. Aliyeva L., Afandiyeva L., Abbasov V. et al.: Processes of Petrochemistry and Oil-Refining, 2017, 18, 202.
  60. Afandiyeva L., Abbasov V., Aliyeva L. et al.: 3rd Turkic World Conference on Chemical Sciences and Technologies, Azerbaijan, Baku 2017, 207.
  61. Emanuel N., Roginsky V., Buchachenko A.: Russ. Chem. Rev., 1982, 51, 203. https://doi.org/10.1070/RC1982v051n03ABEH002826
  62. Emanuel N., Buchachenko A.: Khimicheskaya Fizika Molekulyarnogo Razrusheniya i Stabilizatsii Polimerov. Nauka, Moskva 1988.
  63. Shlyapnikov Yu.: Russ. Chem. Rev., 1981, 50, 581. https://doi.org/10.1070/RC1981v050n06ABEH002652
  64. Zeynalov E.: Anticatalysts of Thermooxidative Degradation of Polymeric Materials. Elm, Baku 2014.
  65. Emanuel N., Denisov E., Mayzus Z.: Tsepniye reaktsii okisleniya uglevodorodov v zhidkoy faze. Nauka, Moskva 1965.
  66. Maillard B., Ingold K., Scaiano J.: J. Am. Chem. Soc., 1983, 105, 5095. https://doi.org/10.1021/ja00353a039
  67.  Scott G.: Atmospheric Oxidation and Antioxidants. Elsevier, London 1993.