Дослідження властивостей гідрогелевих пластин на основі високоестерифікованого пектину

2022;
: cc. 220 - 226
1
Національний університет “Львівська політехніка”
2
Національний університет “Львівська політехніка”
3
Упсальський університет, відділ нанотехнологій і функціональних матеріалів
4
Національний університет “Львівська політехніка”
5
Національний університет „Львівська політехніка”
6
Lviv Polytechnic National University
7
Національний університет “Львівська політехніка”

У повідомленні описані особливості фізико-механічних властивостей і абсорбційної спроможності гідрогелів, отриманих на основі високоестерифікованого пектину. На основі ряду експериментальних даних продемонстровано взаємозв’язок між цими величинами та зроблена спроба пояснити отримані залежності через морфологію гідрогелю та механізм його формування.

[1] Shevchuk, O.; Bukartyk, N.; Chobit, M.; Tokarev, V. Synthesis and characteristics of cross-linked polymer hydrogels with embedded CdS nanocrystals. J. Polym. Res. 2021, 28 (9), 331. https://doi.org/10.1007/s10965-021-02662-3
[2] Nosova, N.G.; Samaryk, V.J.; Varvarenko, S.M.; Ferens, M.V.; Voronovska, A.V.; Nagornyak, M.I.; Khomyak, S.V.; Nadashkevych, Z.J.; Voronov, S.A. Porous polyacrylamide hydrogels: Preparation and properties. Vopr. Khimii i Khimicheskoi Tekhnologii 2016, 5,6, 78-86.
[3] Samaryk, V.; Varvarenko, S.; Nosova, N.; Fihurka, N.; Musyanovych, A.; Landfester, K.; Voronov, S. Optical properties of hydrogels filled with dispersed nanoparticles. Chem. Chem. Technol. 2017, 11(4), 449-453. https://doi.org/10.23939/chcht11.04.449
[4] Zubyk, H.; Mykhailiv, O.; Papathanassiou, A.N.; Sulikowski, B.; Zambrzycka-Szelewa, E.; Bratychak, M.; Plonska-Brzezinska, M.E. A phenol-formaldehyde polymeric network to generate organic aerogels: Synthesis, physicochemical characteristics and potential applications. J. Mater. Chem. A 2018, 6(3), 845-852. https://doi.org/10.1039/C7TA08814K
[5] Suberlyak, O.; Grytsenko, O.; Baran, N.; Yatsulchak, G.; Berezhnyy, B. Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chem. Chem. Technol. 2020, 14(3), 312-317. https://doi.org/10.23939/chcht14.03.312
[6] Oltarzhevskaya, N.D.; Korovina, M.A.; Krichevskij, G.E.; Shchedrina, M.A.; Egorova, E.A. Vozmozhnosti primeneniya polisaharidov pri lechenii ran. Wounds and wound infections. The prof. B.M. Kostyuchenok journal. 2019, 6(2), 24-31. https://doi:10.25199/2408-9613-2019-6-2-24-31
[7] Popadyuk, A.; Tarnavchyk, I.; Popadyuk, N.; Kohut, A.; Samaryk, V.; Voronov, S; Voronov, A. A novel copolymer of N-[(tert-butylperoxy)methyl]acrylamide and maleic anhydride for use as a reactive surfactant in emulsion polymerization. React. Funct. Polym. 2013, 73(9), 1290-1298. https://doi:10.1016/j.reactfunctpolym.2013.07.002
[8] Maikovych, O.; Nosova, N.; Yakoviv, M.; Dron, І; Stasiuk, A.; Samaryk, V.; Voronov, S. Composite materials based on polyacrylamide and gelatin reinforced with polypropylene microfiber. Vopr. Khimii i Khimicheskoi Tekhnologii 2021, 1, 45-54. http://dx.doi.org/10.32434/0321-4095-2021-134-1-45-54
[9] Christiaens, S.; Van Buggenhout, S.; Houben, K.; Jamsazzadeh Kermani, Z.; Moelants, K.R.N.; Ngouémazong, E.D.; Van Loey, A.; Hendrickx, M.E.G. Process–Structure–Function Relations of Pectin in Food. Crit. Rev. Food Sci. Nutr. 2016, 56(6), 1021-1042. https://doi.org/10.1080/10408398.2012.753029
[10] Espitia, P.J.P.; Du, W.-X.; Avena-Bustillos, R.D.J.; Soares, N.D.F.F.; McHugh, T.H. Edible films from pectin: Physical-mechanical and antimicrobial properties – A Review. Food Hydrocoll. 2014, 35, 287-296. https://doi.org/10.1016/j.foodhyd.2013.06.005
[11] Noreen, A.; Nazli, Z.-i-H.; Akram, J.; Rasul, I.; Mansha, A.; Yaqoob, N.; Iqbal, R.; Tabasum, S.; Zuber, M.; Zia, K.M. Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. Int. J. Biol. Macromol. 2017, 101, 254-272. http://dx.doi.org/10.1016/j.ijbiomac.2017.03.029
[12] Liu, L.; Fishman, M.L.; Kost, J.; Hicks, K.B. Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials 2003, 24(19), 3333-3343. https://doi.org/10.1016/S0142-9612(03)00213-8
[13] Moreira, H.R.; Munarin, F.; Gentilini, R.; Visai, L.; Granja, P.L.; Tanzi, M.C.; Petrini, P. Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling and rheological properties. Carbohydr. Polym. 2014, 103, 339-347. http://dx.doi.org/10.1016/j.carbpol.2013.12.057
[14] Minzanova, S.T.; Mironov, V.F.; Arkhipova, D.M.; Khabibullina, A.V.; Mironova, L.G.; Zakirova, Y.M.; Milyukov, V.A. Biological Activity and Pharmacological Application of Pectic Polysaccharides: A Review. Polymers 2018, 10, 1407. https://doi.org/10.3390/polym10121407
[15] Soroka, O.B.; Kosenko, S.V. Sposіb lіkuvannya ran u rotovіj porozhninі. Patent Ukrainy 16836, August 15, 2006.
[16] Rezvanian, M.; Ahmad, N.; Amin, M.C.I.M.; Ng, S.-F. Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int. J. Biol. Macromol. 2017, 97, 131-140. https://doi.org/10.1016/j.ijbiomac.2016.12.079
[17] Neves, S.C.; Gomes, D.B.; Sousa, A.; Bidarra, S.J.; Petrini, P.; Moroni, L.; Barrias, C.C.; Granja, P.L. Biofunctionalized pectin hydrogels as 3D cellular microenvironments. J. Mater. Chem. B 2015, 3(10), 2096-2108. https://doi.org/10.1039/C4TB00885E
[18] Tummalapalli, M.; Berthet, M.; Verrier, B.; Deopura, B.L.; Alam, M.S; Gupta, B. Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agent. Int. J. Biol. Macromol. 2016, 82, 104-113. http://dx.doi.org/10.1016/j.ijbiomac.2015.10.087
[19] Zhu, Y.; Yao, Z.; Liu, Y.; Zhang, W.; Geng, L.; Ni, T. Incorporation of ROS-Responsive Substance P-Loaded Zeolite Imidazolate Framework-8 Nanoparticles into a Ca2+-Cross-Linked Alginate/Pectin Hydrogel for Wound Dressing Applications. Int. J. Nanomedicine 2020, 15, 333-346. http://doi.org/10.2147/IJN.S225197
[20] Powers, J.G.; Morton, L.M.; Phillips, T.J. Dressings for chronic wounds. Dermatol. Ther. 2013, 26, 197-206. https://doi.org/10.1111/dth.12055
[21] Tavakoli, А.; Klar, A.S. Advanced Hydrogels as Wound Dressings. Biomolecules 2020, 10 (8), 1169. https://doi.org/10.3390/biom10081169
[22] Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; Tao, O.; Pham, H.M.; Tran, S.D. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials 2019, 12(20), 3323. https://doi.org/10.3390/ma12203323
[23] Rezvanian, M.; Amin, M.C.I.M.; Ng, S.F. Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing. Carbohydr. Polym. 2016, 137, 295-304. https://doi.org/10.1016/j.carbpol.2015.10.091
[24] Fang, Y.; Al-Assaf, S.; Phillips, G.O.; Nishinari, K.; Funami, T.; Williams, P.A. Binding behavior of calcium to polyuronates: Comparison of pectin with alginate. Carbohydr. Polym. 2008, 72(2), 334-341. https://doi.org/10.1016/j.carbpol.2007.08.021
[25] Gawkowska, D.; Cybulska, J.; Zdunek, A. Structure-Related Gelling of Pectins and Linking with Other Natural Compounds: A Review. Polymers 2018, 10(7), 762. https://doi.org/10.3390/polym10070762
[26] Siggia, S.; Hanna, J.G. Quantitative Organic Analysis via Functional Groups, 4th ed.; John Wiley & Sons Inc., 1979.
[27] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate derivative of ED-24 epoxy resin and its application. Chem. Chem. Technol. 2013, 7(1), 73-77. https://doi.org/10.23939/chcht07.01.073
[28] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and application of ED-20 epoxy resin hydroxy-containing derivatives in bitumen-polymeric blends. Chem. Chem. Technol. 2015, 9(1), 69-76. https://doi.org/10.23939/chcht09.01.069
[29] Bratychak, M.; Iatsyshyn, O.; Shyshchak, O.; Atsakhova, O.; Janik, H. Carboxy derivative of dioxydiphenylpropane diglycidyl ether monomethacrylate as an additive for composites. Chem. Chem. Technol. 2017, 11(1), 49-54. https://doi.org/10.23939/chcht11.01.049
[30] Mysak, Y.; Kovalenko, T.; Serdiuk, V.; Kravets, T.; Martynyak-Andrushko, M. Obtaining of polymethacrylate additives and studying of operational properties of an alloyed industrial oil. EasternEuropean J. Enterp. Technol. 2016, 3(6), 9-15. https://doi.org/10.15587/1729-4061.2016.71235
[31] Rojas-Molina, I.; Gutiérrez-Cortez, E.; Bah, M.; Rojas-Molina, A.; Ibarra-Alvarado, C.; Rivera-Muñoz, E.; del Real, A.; Aguilera-Barreiro, M.D.L.A. Characterization of Calcium Compounds in Opuntia ficus indica as a Source of Calcium for Human Diet. J. Chem. 2015, Article ID 710328. https://doi.org/10.1155/2015/710328
[32] Bratychak, M.; Bratychak, M.; Brostow, W.; Shyshchak, O. Synthesis and properties of peroxy derivatives of epoxy resins based on Bisphenol A: Effects of the presence of boron trifluoride ethereate. Mater. Res. Innov. 2002, 6(1), 24-30. https://doi.org/10.1007/s10019-002-0157-7
[33] Zhang, K.; Feng, W.; Jin, C. Protocol efficiently measuring the swelling rate of hydrogels. MethodsX 2020, 7, 100779. https://doi.org/10.1016/j.mex.2019.100779
[34] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7(3), 279-287. https://doi.org/10.23939/chcht07.03.279
[35] Lara-Espinoza, C.; Carvajal-Millán, E.; Balandrán-Quintana, R.; López-Franco, Y.; Rascón-Chu, A. Pectin and Pectin-Based Composite Materials: Beyond Food Texture. Molecules 2018, 23(4), 942. https://doi.org/10.3390/molecules23040942
[36] Huglin, M.B.; Yip, D.C.F. Microsyneresis region in poly(2-hydroxyethyl methacrylate) hydrogels. Macromolecules 1992, 25(4), 1333-1337. https://doi.org/10.1021/ma00030a020