Кінетика адсорбції та ізотерми йонів Cu(II) і Fe(II) з водних розчинів з використанням геополімеру на основі золи виносу

1
Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto
2
Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto
3
Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto
4
Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto
5
Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto

Експериментально досліджено адсорбцію йонів Cu2+ та Fe2+, звичайних важких металів, що знаходяться в промислових стічних водах, геополімером на основі золи виносу. Встановлено, що адсорбція кожного йона відбувається за реакцією псевдодругого порядку. Доведено, що ізотерма адсорбції йонів Cu2+ та Fe2+ відповідає моделі Ленгмюра. Визначено, що моношарова адсорбційна здатність становила приблизно 53,76 мг/г та 52,63 мг/г для йонів Cu2+ та Fe2+, відповідно.

[1] Davidovits, J. Geopolymers: Ceramic-Like Inorganic Polymers. J. Ceram. Sci. Technol. 2017, 8, 335-350. https://doi.org/10.4416/JCST2017-00038
[2] Kramar, S.; Ducman, V. Mechanical and Microstructural Characterization of Geopolymer Synthesized from Low Calcium Fly Ash. Chem. Ind. Chem. Eng. Q. 2015, 21, 13-22. https://doi.org/10.2298/CICEQ130725042K
[3] Bhatnagar, A. ; Minocha, A.K. Conventional and Non-Conventional Adsorbents for Removal of Pollutants From Water – A Review. Indian J. Chem. Technol. 2006, 13, 203-217. http://nopr.niscair.res.in/handle/123456789/7020
[4] Alehyen, S.; Achouri, M.; Taibi, M. Characterization, Microstructure and Properties of Fly Ash-Based Geopolymer. J. Mater. Environ. Sci., 2017, 8, 1783-1796.
[5] Zhuang, X.Y.; Chen, L.; Komarneni, S.; Zhou, C.H.; Tong, D.S.; Yang, H.M.; Yu, W.H.; Wang, H. Fly Ash-Based Geopolymer: Clean Production, Properties and Applications. J. Clean. Prod. 2016, 125, 253-267. https://doi.org/10.1016/j.jclepro.2016.03.019
[6] Singh, N.B. Fly Ash-Based Geopolymer Binder: A Future Construction Material. Minerals 2018, 8, 299-320. https://doi.org/10.3390/min8070299
[7] Siyal, A.A.; Shamsuddin, M.R.; Khan, M.I.; Rabat, N.E.; Zulfiqar, M.; Man, Z.; Siame, J.; Azizli, K.A. A Review on Geopolymers as Emerging Materials for the Adsorption of Heavy Metals and Dyes. J. Environ. Manage. 2018, 224, 327-339. https://doi.org/10.1016/j.jenvman.2018.07.046 
[8] Rasaki, S.A.; Bingxue, Z.; Guarecuco, R.; Thomas, T.; Minghui, Y. Geopolymer for Use in Heavy Metals Adsorption, and Advanced Oxidative Processes: A Critical Review. J. Clean. Prod. 2019, 213, 42-58. https://doi.org/10.1016/j.jclepro.2018.12.145 
[9] Iakovleva, E.; Sillanpää, M. The Use of Low-Cost Adsorbents for Wastewater Purification in Mining Industries. Environ. Sci. Pollut. Res. 2013, 20, 7878-7899. https://doi.org/10.1007/s11356-013-1546-8
[10] Lim, A.P.; Aris A.Z. A Review on Economically Adsorbents on Heavy Metals Removal in Water and Wastewater. Rev. Environ. Sci. Biotechnol. 2014, 13, 163-181. https://doi.org/10.1007/s11157-013-9330-2
[11] Sabadash, V.; Mylanyk, O.; Matsuska, O.; Gumnitsky, J. Kinetic Regularities of Copper Ions Adsorption by Natural Zeolite. Chem. Chem. Technol. 2017, 11, 459-462. https://doi.org/10.23939/chcht11.04.459
[12] Al-Saydeh, S.A.; El-Naas, M.H.; Zaidi, S.J. Copper Removal from Industrial Wastewater: A Comprehensive Review. J. Ind. Eng. Chem. 2017, 56, 35-44. https://doi.org/10.1016/j.jiec.2017.07.026 
[13] Ahmaruzzaman, M. Industrial Wastes as Low-Cost Potential Adsorbents for the Treatment of Wastewater Laden with Heavy Metals. Adv. Colloid Interface Sci. 2011, 166, 36-59. https://doi.org/10.1016/j.cis.2011.04.005
[14] Ge, Y.; Cui, X.; Kong, Y.; Li, Z.; He, Y.; Zhou, Q. Porous Geopolymeric Spheres for Removal of Cu(II) from Aqueous Solution: Synthesis and Evaluation. J. Hazard. Mater. 2015, 283, 244-251. https://doi.org/10.1016/j.jhazmat.2014.09.038 
[15] Abas, S.N.A.; Ismail, M.H.S.; Kamal, M.L.; Izhar, S. Adsorption Process of Heavy Metals by Low-Cost Adsorbent: A Review. World Appl. Sci. J. 2013, 28, 1518-1530. 
[16] Nguyen, K.M.; Nguyen, B.Q.; Nguyen H.T.; Nguyen H.T.H. Adsorption of Arsenic and Heavy Metals from Solutions by Unmodified Iron-Ore Sludge. Appl. Sci. 2019, 9, 619-633. https://doi.org/10.3390/app9040619
[17] Al-Zboon, K.; Al-Harahsheh, M.S.; Hani, F.B. Fly Ash-Based Geopolymer for Pb Removal from Aqueous Solution. J. Hazard. Mater. 2011, 188, 414-421. https://doi.org/10.1016/j.jhazmat.2011.01.133 
[18]Al-Harahsheh, M.S.; Al-Zboon, K.; Al-Makhadmeh, L.; Hararah, M.; Mahasneh, M. Fly Ash Based Geopolymer for Heavy Metal Removal: A Case Study on Copper Removal. J. Environ. Chem. Eng. 2015, 3, 1669-1677. https://doi.org/10.1016/j.jece.2015.06.005 
[19] Qiu, J.; Zhao, Y.; Xing, J.; Sun, X. Fly Ash-Based Geopolymer as a Potential Adsorbent for Cr(VI) Removal. Desalin. Water Treat. 2017, 70, 201-209. https://doi.org/10.5004/dwt.2017.20493
[20] Duan, P.; Yan, C.; Zhou, W.; Ren, D. Development of Fly Ash and Iron Ore Tailing Based Porous Geopolymer for Removal of Cu(II) from Wastewater. Ceram. Int. 2016, 42, 13507-13518. https://doi.org/10.1016/j.ceramint.2016.05.143 
[21] Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. https://doi.org/10.1155/2017/3039817
[22] Karthikeyan, G.; Siva Ilango, S. Equilibrium Sorption Studies of Fe, Cu and Co Ions in Aqueous Medium Using Activated Carbon Prepared from Recinius Communis Linn. J. Appl. Sci. Environ. Manage. 2008, 12, 81-87. https://doi.org/10.4314/jasem.v12i2.55537
[23] Sarkar, C.; Basu, J.K.; Samanta, A.N. Synthesis of Mesoporous Geopolymeric Powder from LD Slag as Superior Adsorbent for Zinc (II) Removal. Adv. Powder Technol. 2018, 29, 1142-1152. https://doi.org/10.1016/j.apt.2018.02.005 
[24] Davidovits, J. Geopolymer: Chemistry and Applications; Institut Géopolymère: Saint-Quentin, 2008.
[25] Lee, W.K.W.; van Deventer, J.S.J. Structural Reorganisation of Class F Fly Ash in Alkaline Silicate Solutions. Colloid Surface A 2002, 211, 49-66. https://doi.org/10.1016/S0927-7757(02)00237-6 
[26] Lee, W.K.W.; van Deventer, J.S.J. The Effects of Inorganic Salt Contamination on the Strength and Durability of Geopolymers. Colloid Surface A 2002, 211, 115-126. https://doi.org/10.1016/S0927-7757(02)00239-X 
[27] Nath, S.K.; Maitra, S.; Mukherjee, S.; Kumar S. Microstructural and Morphological Evolution of Fly Ash Based Geopolymers. Constr. Build. Mater. 2016, 111, 758-765. https://doi.org/10.1016/j.conbuildmat.2016.02.106 
[28] Bouguermouh, K.; Bouzidi, N.; Mahtout, L.; Pérez-Villarejo, L.; Martínez-Cartas, M.L.Effect of Acid Attack on Microstructure and Composition of Metakaolin-Based Geopolymers: The Role of Alkaline Activator. J. Non-Cryst. Solids 2017, 463, 128-137. https://doi.org/10.1016/j.jnoncrysol.2017.03.011