Обчислювальна модель для прогнозування корисної потужності паливного елементу протонообмінної мембрани

2022;
: cc. 303 – 313
Автори:
1
Amirkabir university of technology (Tehran polytechnic), Department of energy engineering and physics
2
Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic)

Показано збільшення електричної енергії внаслідок збагачення киснем. З метою максималізації кількості кисню у всіх областях каталітичного шару (CL), для питомої ефективної площі мембрани (MEA) змодельовано поле потоку (FF). За розробленою моделлю 3DCFD спрогнозована швидкість приросту електричної енергії за підвищення кількості кисню в CL на 1 %. Змодельовано зволожену повітряну суміш на паливному елементі протонообмінної мембрани (PEMFC). Показано, що аналітичні та розрахунковий гідродинамічний метод дають подібні результати, а похибка моделі CFD становить приблизно 1,9 % порівняно з аналітичним методом.

[1] Wang, X.-D.; Duan, Y.-Y.; Yan, W.-M.; Peng, X.-F. Local Transport Phenomena and Cell Performance of PEM Fuel Cells with Various Serpentine Flow Field Designs.J. Power Sources2008, 175, 397-407.https://doi.org/10.1016/j.jpowsour.2007.09.009
[2] Ramesh, P.;Duttagupta, S.P. Effect of Channel Dimensions on Micro PEM Fuel Cell Performance Using 3D Modeling.Int. J. Renew. Energ. Res.2013, 3, 353-358.
[3] Choghadi, H.;Kermani, M. 10th Int. Conf. on Sustainable Energy Technologies SET2011, September4-7, 2011, Turkey, Istanbul.
[4] Bernardi, D.M.;Verbrugge, M.W. A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell.J. Electrochem. 1992, 139, 2477. https://doi.org/10.1149/1.2221251
[5] Khakbaz-Baboli, M.;Kermani, M.J. A Two-Dimensional, Transient, Compressible Isothermal and Two-Phase Model for the Air-Side Electrode of PEM Fuel Cells.J. Electrochem. Acta2008, 53, 7644-7654. https://doi.org/10.1016/j.electacta.2008.04.017
[6] Okada, O.; Yokoyama, K.Development of Polymer Electrolyte Fuel Cell Cogeneration Systems for Residential Applications.Fuel Cells2001, 1, 72-77. https://doi.org/10.1002/1615-6854(200105)1:1%3C72::AID-FUCE72%3E3.0.CO;2-P
[7] Thoennes, M.;Busse, A.; Eckstein, L.Forecast of Performance Parameters of Automotive Fuel Cell Systems – Delphi Study Results.Fuel Cells2014, 14, 781-791. https://doi.org/10.1002/fuce.201400035
[8] Wieser, C.Novel Polymer Electrolyte Membranes for Automotive Applications – Requirements and Benefits.Fuel Cells2004, 4, 245-250. https://doi.org/10.1002/fuce.200400038
[9] Britz, P.;Zartenar, N.PEM – Fuel Cell System for Residential Applications. Fuel Cells2004, 4, 269-275. https://doi.org/10.1002/fuce.200400043
[10] Kakati, B.K.; Mohan, V.Development of Low-CostAdvanced Composite Bipolar Plate for Proton Exchange Membrane Fuel Cell.Fuel Cells2008,8, 45-51. https://doi.org/10.1002/fuce.200700008
[11] Yi, P.Y.; Peng, L.F.; Lai, X.M.; Liu, D.A.; Ni, J. A Novel Design of Wave-Like PEMFC Stack with Undulate MEAs and Perforated Bipolar Plates.Fuel Cells2010,10, 111-117. https://doi.org/10.1002/fuce.200900031
[12] Shamardina, O.;Kulikovsky, A.A.;Chertovich, A.V.;Khokhlov, A.R. A Model for High-Temperature PEM Fuel Cell: The Roleof Transport in theCathodeCatalyst Layer.Fuel Cells2012,12, 577-582. https://doi.org/10.1002/fuce.201100144
[13] Ghanbarian,A.; Kermani, M.J.;Scholta, J.Generalizationof a CFD Model toPredictthe Net Power in PEM Fuel Cells.Iran. J. Hydrogen Fuel Cell2019, 6, 23-37. http://doi.org/10.22104/ijhfc.2019.3176.1179
[14] Choi, K.-S.; Kim, B.-G.; Park, K.; Kim, H.M. Current Advances in Polymer Electrolyte Fuel Cells Based on the Promotional Role of Under-rib Convection.Fuel Cells2012,12, 908-938. https://doi.org/10.1002/fuce.201200035
[15] Chapter 1.In Fluid Mechanics(Fifth Edition);Kundu, P.; Cohen, I.; Dowling, D., Eds.; Academic Press, 2012, pp 1-37. https://doi.org/10.1016/B978-0-12-382100-3.10001-0.
[16] Tehlar, D.;Flückiger,R.;Wokaun, A.;Büchi, F.Investigation of Channel-to-Channel Cross Convection in Serpentine Flow Fields. Fuel Cells2010, 10, 1040-1049. https://doi.org/10.1002/fuce.201000034
[17] Wang, J.; Wang, H.Flow-Field Designs of Bipolar Plates in PEM Fuel Cells: Theory and Applications.Fuel Cells2012, 12, 989-1003. https://doi.org/10.1002/fuce.201200074
[18] Liu, H.C.; Yan, W.M.; Soong, C.Y.;Chen, F.;Chu, H.-S.Reactant Gas Transport and Cell Performance of Proton Exchange Membrane Fuel Cells with Tapered Flow Field Design.J. Power Sources2006,158, 78-87. https://doi.org/10.1016/j.jpowsour.2005.09.017
[19] Hasmady, S.; Wacker, M.;Fushinobu, K.; Okazaki, K. ASME-JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, British Columbia, Canada, 2007; 20.
[20] Akhtar, N.;Qureshi, A.;Scholta, J.;Hartnig, C.;Messerschmidt, M.;Lehnert, W. Investigation of Water Droplet Kinetics and Optimization of Channel Geometry for PEM Fuel Cell Cathodes.Int. J. Hydrogen Energ. 2009,34, 3104-3111. https://doi.org/10.1016/j.ijhydene.2009.01.022
[21] Klages, M.; Enz, S.; Markötter, H.;Manke, I.; Kardjilov, N.;Scholta, J.Investigations on Dynamic Water Transport Characteristics in Flow Field Channels Using Neutron Imaging Techniques.J. Power Sources2013, 239, 596-603. https://doi.org/10.1016/j.jpowsour.2013.01.196
[22] Norouzi, N.;Talebi, S.An Overview on the Green Petroleum Production.Chem. Rev. Lett. 2020,3, 38-52. https://doi.org/10.22034/crl.2020.222515.1041
[23] Norouzi, N.;Fani, M.;Ziarani, Z.K. The Fall of Oil Age:A Scenario Planning Approach over the Last Peak Oil of Human History by 2040.J. Petrol. Sci. Eng. 2020,188, 106827. https://doi.org/10.1016/j.petrol.2019.106827
[24] Mirvakili, A.; Chahibakhsh, S.;Ebrahimzadehsarvestani, M.;Soroush, E.;Rahimpour, M.R.Modeling and Assessment of Novel Configurations to Enhance Methanol Production in Industrial Mega-Methanol Synthesis Plant. J. Taiwan Inst. Chem. Eng. 2019,104, 40-53. https://doi.org/10.1016/j.jtice.2019.09.018
[25] Chen, K.; Yu, J.; Liu, B.; Si, C.; Ban, H.; Cai, W.; Li, C.; Li, Z.; Fujimoto, K.Simple Strategy Synthesizing Stable CuZnO/SiO2 Methanol Synthesis Catalyst.J. Catal. 2019,372, 163-173.https://doi.org/10.1016/j.jcat.2019.02.035