Покращення електропровідності та термостійкості нанокомпозитів поліанілін-maghnite

2023;
: cc. 118 - 125
1
Unité de Chimie, Faculté de Médecine, Université 1 Oran, L.P.P.M.C.A. Université des Sciences et de la Technologie, M. Boudiaf
2
L.P.P.M.C.A. Université des Sciences et de la Technologie, M. Boudiaf
3
Laboratoire de Chimie des matériaux
4
L.P.P.M.C.A. Université des Sciences et de la Technologie, M. Boudiaf

Одержано новий нанокомпозит на основі електропровідного поліаніліну (PANI) й алжирської монтморилонітової глини під назвою Maghnite, який поєднує електропровідні та теплові властивості (Mag). Зразки нанокомпозитів PANI-Mag синтезовано за допомогою in situ полімеризації в присутності ЦТАБ (цетилтриметиламоній броміду) як органомодифікатора галерей глини. Досліджено електричні та теплові властивості отриманих нанокомпозитів залежно від співвідношення PANI-Mag. Зі збільшенням кількості Ma-ghnite в нанокомпозиті його термічна стабільність помітно покращується, як показано термогравіметричним аналізом. Електропровідність нанокомпозитів нижча, ніж у вільного PANI. За додавання 5 % глини провідність починає падати і зменшується на багато порядків. Одержані результати показують, що провідність нанокомпозитів не залежить істотно від вмісту та дисперсності глини.

  1. Gonzalez, L.; Lafleur, P.; Lozano, T.; Morales, A.B.; Garcia, R.; Angeles, M.; Rodriguez, F.; Sanchez, S. Mechanical and Thermal Properties of Polypropylene/Montmorillonite Nanocomposites Using Stearic Acid as Both an Interface and a Clay Surface Modifi-er. Polym. Compos. 2014, 35, 1-9. https://doi.org/10.1002/pc.22627
  2. Valandro, S.R.; Lombardo, P.C.; Poli, A.L.; Horn Jr., M.A.; Neumann, M.G.; Cavalheiro, C.C.S. Thermal Properties of Poly (Methyl Methacrylate)/Organomodified Montmorillonite Nanocomposites Obtained by in situ Photopolymerization. Mater. Res. 2014, 17, 265-270. https://doi.org/10.1590/S1516-14392013005000173
  3. Dhatarwal, P.; Sengwa, R.J.; Choudhary S. Effect of Intercalated and Exfoliated Montmorillonite Clay on the Structural, Dielectric and Electrical Properties of Plasticized Nanocomposite Solid Polymer Electrolytes. Compos. Commun. 2017, 5, 1-7. https://doi.org/10.1016/j.coco.2017.05.001
  4. Cui, Y.; Kumar, S.; Kona, B.R.; van Houcke, D. Gas Barrier Properties of Polymer/Clay Nanocomposites. RSC Adv. 2015, 5, 63669-63690. https://dx.doi.org/10.1039/c5ra10333a
  5. MacDiarmid, A.G. Nobel Lecture: "Synthetic Metals": A Novel Role for Organic Polymers. Rev. Mod. Phys. 2001, 73, 701-712. https://doi.org/10.1103/RevModPhys.73.701
  6. Belbachir, M.; Bensaoula, A. Composition and Method for Catalysis Using Bentonite. US 7, 094, 823 B2, January 1, 2006.
  7. Haoue, S.; Derdar, H.; Belbachir, M.; Harrane, A. A New Green Catalyst for Synthesis of bis-Macromonomers of Polyethylene Glycol (PEG). Chem. Chem. Technol. 2020, 14, 468-473. https://doi.org/10.23939/chcht14.04.468
  8. Zhu, J.; He, H.; Zhu, L.; Wen, X.; Deng, F. Characterization of Organic Phases in the Interlayer of Montmorillonite Using FTIR and 13C NMR. J. Colloid Interface Sci. 2005, 286, 239-244. https://doi.org/10.1016/j.jcis.2004.12.048
  9. Zhu, L.; Zhu, R.; Xu, L.; Ruan, X. Influence of Clay Charge Densities and Surfactant Loading Amount on the Microstructure of CTMA-Montmorillonite Hybrids. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 304, 41-48. https://doi.org/10.1016/j.colsurfa.2007.04.019
  10. Caillere, S.; Henin, S.; Rautureau, M. Minéralogie des argiles; Masson: Paris, 1982.
  11. Tang, J.; Jing, X.; Wang, B.; Wang, F. Infrared Spectra of Soluble Polyaniline. Synth. Met. 1988, 24, 231-238. https://doi.org/10.1016/0379-6779(88)90261-5
  12. Ghosh, M.; Meikap, A.K.; Chattopadhyay, S.K.; Chatterjee, S. Low Temperature Transport Properties of Cl-Doped Conducting Polyaniline. J. Phys. Chem. Solids 2001, 62, 475-484. https://doi.org/10.1016/S0022-3697(00)00189-X
  13. Yan, H.; Toshima, N. Chemical Preparation of Polyaniline and its Derivatives by Using Cerium(IV) Sulfate. Synth. Met. 1995, 69, 151-152. https://doi.org/10.1016/0379-6779(94)02398-I
  14. Rout, T.K.; Jha, G.; Singh, A.K.; Bandyopadhyay, N.; Mohanty, O.N. Development of Conducting Polyaniline Coating: A Novel Approach to Superior Corrosion Resistance. Surf. Coat. Technol. 2003, 167, 16-24. https://doi.org/10.1016/S0257-8972(02)00862-9
  15. Ruckenstein, E.; Yang, S. An Emulsion Pathway to Electrically Conductive Polyaniline-Polystyrene Composites. Synth. Met. 1993, 53, 283-292. https://doi.org/10.1016/0379-6779(93)91097-L
  16. Khiew, P.S.; Huang, N.M.; Radiman, S.; Ahmad, Md.S. Synthesis and Characterization of Conducting Polyaniline-Coated Cadmium Sulphide Nanocomposites in Reverse Microemulsion. Mater. Lett. 2004, 58, 516-521. https://doi.org/10.1016/S0167-577X(03)00537-8
  17. Li, Q.; Cruz, L.; Philips, P. Granular-Rod Model for Electronic Conduction in Polyaniline. Phys. Rev. B 1993, 47, 1840-1845. https://doi.org/10.1103/PhysRevB.47.1840
  18. Pouget, J.P.; Hsu, C.-H.; MacDiarmid, A.G.; Epstein, A.J. Structural Investigation of Metallic PAN-CSA and Some of its Derivatives. Synth. Met. 1995, 69, 119-120. https://doi.org/10.1016/0379-6779(94)02382-9
  19. Pouget, J.P.; Jozefowicz, M.E.; Epstein, A.J.; Tang, X.; Mac-Diarmid, A.G. X-Ray Structure of Polyaniline. Macromolecules 1991, 24, 779-789. https://doi.org/10.1021/ma00003a022
  20. Chan, H.S.O.; Ng, S.C.; Sim, W.S.; Seow, S.H.; Tan, K.L.; Tan, B.T.G. Synthesis and Characterization of Conducting poly(o-Aminobenzyl Alcohol) and its Copolymers with Aniline. Macromolecules 1993, 26, 144-150. https://doi.org/10.1021/ma00053a022
  21. Tsocheva, D.; ZIatkov, T.; Terlemezyan, L. Thermoanalytical Studies of Polyaniline 'Emeraldine base'. J. Therm. Anal. Calorim. 1998, 53, 895-904. https://doi.org/10.1023/A:1010146619792
  22. Ghosh, P.; Chakrabarti, A.; Siddhanta, S.K. Studies on Stable Aqueous Polyaniline Prepared with the Use of Polyacrylamide as the Water Soluble Support Polymer. Eur. Polym. J. 1999, 35, h803-813. https://doi.org/10.1016/S0014-3057(98)00065-2
  23. Schemid, A.L.; Córdoba de Torresi, S.I.; Bassetto, A.N.; Carlos, I.A. Structural, Morphological and Spectroelectrochemical Characterization of poly (2-Ethyl Aniline). J. Braz. Chem. Soc. 2000, 11, 317-323. https://doi.org/10.1590/S0103-50532000000300020
  24. Yoshimoto, S.; Ohashi, F.; Ohnishi, Y.; Nonami, T. Synthesis of Polyaniline-Montmorillonite Nanocomposites by the Mechano-chemical Intercalation Method. Synth. Met. 2004, 145, 265-270. https://doi.org/10.1016/j.synthmet.2004.05.011
  25. Chan, H.S.O.; Teo, M.Y.B.; Khor, E., Lim, C.N. Thermal Analysis of Conducting Polymers Part I. Journal of Thermal Analysis 1989, 35, 765-774. https://doi.org/10.1007/BF02057231
  26. Neoh, K.G.; Kang, E.T.; Tan, K.L. Thermal Degradation of Leucoemeraldine, Emeraldine Base and their Complexes. Thermo-chim. Acta 1990, 171, 279-291. https://doi.org/10.1016/0040-6031(90)87027-A
  27. Oh, S.Y.; Koh, H.C.; Choi, J.W.; Rhee, H.-W.; Kim, H.S. Preparation and Properties of Electrically Conductive Polyaniline-Polystyrene Composites by in-situ Polymerization and Blending. Polym. J. 1997, 29, 404-409. https://doi.org/10.1295/polymj.29.404
  28. Wei, Y.; Jang, G.-W.; Hsueh, K.F.; Scheer, E.M.; MacDiarmid, A.G.; Epstein, A.J. Thermal Transitions and Mechanical Properties of Films of Chemically Prepared Polyaniline. Polymer 1992, 33, 314-322. https://doi.org/10.1016/0032-3861(92)90988-9
  29. Lee, D.; Char, K. Thermal Degradation Behavior of Polyaniline in Polyaniline/Na+-Montmorillonite Nanocomposites. Polym. Degrad. Stab. 2002, 75, 555-560. https://doi.org/10.1016/S0141-3910(01)00259-2
  30. Huang, W.-S.; Humphrey, B.D.; MacDiamid, A.G. Polyaniline, a Novel Conducting Polymer. Morphology and Chemistry of its Oxidation and Reduction in Aqueous Electrolytes. J. Chem. Soc., Faraday trans. I 1986, 82, 2385-2400. https://doi.org/10.1039/F19868202385
  31. Desilvestro, J.; Scheifele, W.; Hass, O. In Situ Determination of Gravimetric and Volumetric Charge Densities of Battery Electrodes: Polyaniline in Aqueous and Nonaqueous Electrolytes. J.Electrochem. Soc. 1992, 139, 2727. https://doi.org/10.1149/1.2068971
  32. Kobayashi, T.; Yoneyama, H.; Tamura, H. Oxidative Degrada-tion Pathway of Polyaniline Film Electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 293-297. https://doi.org/10.1016/0022-0728(84)80230-2