Дослідження координаційних сполук гадолінію (III) з β-дикетонами

2023;
: cc. 748 - 757
1
V.I. Vernadsky Institute of General and Inorganic Chemistry of NAS of Ukraine Akad.Palladin Avenue, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
2
V.I. Vernadsky Institute of General and Inorganic Chemistry of NAS of Ukraine Akad.Palladin Avenue
3
Taras Shevchenko National University of Kyiv
4
V.I. Vernadsky Institute of General and Inorganic Chemistry of NAS of Ukraine Akad.Palladin Avenue
5
A.V. BogatskyPhysico-Chemical Institute NASU
6
V.I. Vernadsky Institute of General and Inorganic Chemistry of NAS of Ukraine Akad.Palladin Avenue

New coordination compounds of gadolinium with $\beta$-diketones  containing  unsaturated and aliphatic or aromatic substituents in the $\alpha$-positions of the chelate ring have been synthesized. The performed quantum-chemical calculations of ligand molecules indicate the best acceptor properties of ligands with aromatic substituents. An analysis of the IR spectra and quantum chemical calculations of the metal complexes indicates the bidentate-chelate coordination of the ligand molecules and their arrangement in different planes,  regardless of the nature and geometric structure of the  substituent in the $\beta$-diketone molecule. The energies of the triplet levels of the ligands are calculated. The morphology and dispersion of the synthesized metal complexes have been studied.

Синтезовано нові координаційні сполуки гадолінію з $\beta$-дикетонами, що містять ненасичені та аліфатичні або ароматичні замісники в $\alpha$-положеннях хелатного циклу. Проведено квантово-хімічні розрахунки молекул лігандів свідчать про найкращі акцепторні властивості лігандів з ароматичними замісниками. Аналіз ІЧ-спектрів та квантово-хімічних розрахунків металокомплексів свідчить про бідентатно-хелатну координацію молекул ліганду та їх розташування в різних площинах незалежно від природи та геометричної структури замісника в молекулі $\beta$-дикетону. Розраховано енергії триплетних рівнів лігандів. Вивчено морфологію та дисперсність синтезованих комплексів металів.

  1. Wei, C.; Ma, L.; Wei, H.;Liu, Z.W.; Bian, Z.Q.; Huang, C.H. Advances in Luminescent Lanthanide Complexes and Applications.Sci. China Tech. Sci.2018, 61, 1265-1285. https://doi.org/10.1007/s11431-017-9212-7
  2. Stan, C.S.;Peptu, C.; Marcotte, N.;Horlescu, P.; Sutiman, D. Photoluminescent Properties of Novel Y(III), Sm(III), Eu(III), Gd(III) and Tb(III) Complexes with 2-(1H-1,2,4-Triazol-3-yl)pyridine.Inorg. Chim. Acta2015, 429, 160-167. http://dx.doi.org/10.1016/j.ica.2015.01.041
  3. Kanetomo,T.; Yoshitake,T.; Ishida, T. Strongest Ferromagnetic Coupling in Designed Gadolinium(III)–Nitroxide Coordination Compounds.Inorg. Chem.2016, 55, 8140-8146.https://doi.org/10.1021/acs.inorgchem.6b01072
  4. Orts-Arroyo, M.;Sanchis-Perucho, А.;Moliner, N.; Castro, I.; Lloret, F.; Martínez-Lillo, J. One-Dimensional Gadolinium (III) Complexes Based on Alpha- and Beta-Amino Acids Exhibiting Field-Induced Slow Relaxation of Magnetization.J. Inorganics2022, 10, 32. https://doi.org/10.3390/inorganics10030032
  5. Oliveira, R.S.; TrindadeCursino, A.C.; Gonçalves e Silva Hussein, F.R.Synthesis, Characterization and Photophysical Study of 4,4’-Diamino-2,2’-stilbenedisulfonate with Lanthanide Ions Complexes.Chem. Chem. Technol.2022, 177-184.https://doi.org/10.23939/chcht16.02.177
  6. Marin, R.; Brunet, G.;Murugesu, M.Shining New Light on Multifunctional Lanthanide Single-Molecule Magnets.Angew. Chem. Int. Ed. 2021, 60, 1728-1746. https://doi.org/10.1002/anie.201910299
  7. Woodruff, D.N.;Winpenny, R.E.P.;Layfield, R.A. Lanthanide Single-Molecule Magnets.Chem. Rev.2013, 113,5110–5148. https://doi.org/10.1021/cr400018q
  8. Coronado, E.; Yamashita, M. Molecular Spintronics: The Role of Coordination Chemistry.Dalton Trans. 2016, 45, 16553-16555. https://doi.org/10.1039/C6DT90183B
  9. Chen, J.-T.; Zhou, T.-D.; Sun, W.-B. Multifunctional Lanthanide-Based Single-Molecule Magnets Exhibiting Luminescence Thermometry and Photochromic and Ferroelectric Properties.Dalton Trans. 2023, 52, 4643-4657. http://doi.org/10.1039/D3DT00481C
  10. Oyarzabal, I.; Echenique-Errandonea, E.; San Sebastián, E.; Rodríguez-Diéguez, A.; Seco, J.M.; Colacio, E. Synthesis, Structural Features and Physical Properties of a Family of Triply Bridged Dinuclear 3d-4f Complexes.Magnetochemistry2021, 7, 22. https://doi.org/10.3390/magnetochemistry7020022
  11. Ortu, F.; Reta, D.; Ding, Y.-S.; Goodwin, C.A.P.;Gregson, M.P.; McInnes, E.J. L.; Winpenny, R.E. P.; Zheng, Y.-Z.; Liddle, S.T.; Mills, D.P.,et al.Studies of Hysteresis and Quantum Tunnellingof the Magnetisationin Dysprosium(Iii) Single Molecule Magnets.DaltonTrans.2019, 48, 8541-8545. https://doi.org/10.1039/C9DT01655D
  12. Pavlishchuk, A.V.;Pavlishchuk, V.V.Principles for Creating “Molecular Refrigerators” Derived from Gadolinium(III) Coordination Compounds: A Review.Theor. Exp. Chem. 2020, 56. https://doi.org/10.1007/s11237-020-09635-5
  13. Thalji, M.R.; Ibrahim, A.A.; Ali, G.A.M. Cutting-edge Development in Dendritic Polymeric Materials for Biomedical and Energy Applications.Eur. Polym. J.2021,160,110770.http://doi.org/10.1016/j.eurpolymj.2021.110770
  14. Zhao, M.; Tang, Z.; Zhang, J.; Fu, G.; Xu, W.; Wu, Q.; Pu, L. Preparation and MRI Performance of a Composite Contrast Agent Based on Palygorskite Pores and Channels Binding Effect to Prolong the Residence Time of Water Molecules on Gadolinium Ions. RSC Adv.2022, 12, 7328-7331.http://doi.org/10.1039/D1RA08967F
  15. Xu, K.; Xu, N.;Zhang, B.; Tang, W.; Dinga, Y.; Hu, A. Gadolinium Complexes of Macrocyclic Diethylenetriamine-N-oxide Pentaacetic Acid-Bisamide as Highly Stable MRI Contrast Agents with High Relaxivity.Dalton Trans. 2020, 49, 8927-8932. http://doi.org/10.1039/D0DT00248H
  16. Sakol, N.;Egawa, A.; Fujiwara, T. Gadolinium Complexes as Contrast Agent for Cellular NMR Spectroscopy.Int J. Mol. Sci.2020, 21, 4042. http://doi.org/10.3390/ijms21114042
  17. Clough, T.J.; Jiang, L.; Wong, K.-L.; Long, N.J. Ligand Design Strategies to Increase Stability of Gadolinium-Based Magnetic Resonance Imaging Contrast Agents.Nat.Commun. 2019, 10, 1420. https://doi.org/10.1038/s41467-019-09342-3
  18. Ramalho, J.;Semelka, R.C.;Ramalho, M.; Nunes, R.H.; AlObaidy, M.; Castillo, M. Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update.AJNR Am J Neuroradiol2016, 37, 1192-1198. http://doi.org/10.3174/ajnr.A4615
  19. Law,J.J.; Guven,A.; Wilson,L.Relaxivity Enhancement of AquatedTris(β-diketonate)gadolinium(III) Chelates by Confinement within Ultrashort Single-Walled Carbon Nanotubes. Contrast Media Mol. Imaging2014, 9, 409-412.https://doi.org/10.1002/cmmi.1603
  20. Savchenko, I.A., Berezhnytska, A.S., Ivakha, N.B.,Trunova E.K. Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications.InSpringer Proceedings in PhysicsV. 156; Springer International Publishing: Switzerland, 2015; pp 85-94.
  21. Galán, L.A.;Sobolev, A.N.;Zysman-Colman, E.; Ogden, M.I.; Massi, M. Lanthanoid Complexes Supported by retro-ClaisenCondensation Products of β-Triketonates.Dalton Trans.2018, 47, 17469-17478. http://doi.org/10.1039/C8DT03585G
  22. Berezhnytska, О.;Rohovtsov, O.;Horbenko, A.;Fedorov, Y.; Trunova, O.; Chyhyrynets, O.; Smola, S.The Coordination Compounds Gd (III) AND Dy(III) with some β-Diketones.Ukrainian ChemistryJournal2021, 87, 97-120. https://doi.org/10.33609/2708-129X.87.06.2021.97-120
  23. Fu, C.-Y.; Chen, L.; Wang, X.; Lin, L.R. Synthesis of Bis-β-Diketonate Lanthanide Complexes with an Azobenzene Bridge and Studies of their Reversible Photo/Thermal Isomerization Properties.ACS Omega2019,4, 15530-15538. https://doi.org/10.1021/acsomega.9b01817
  24. Berezhnytska, O.S.;Savchenko, I.O.;Ivakha, N.B.; Smola, S.S.; Rohovtsov, O.O.; Rusakova, N.V.; Trunova,O.K. Influence of the Nature of the Substitute on the Luminescent Properties of β-Diketonate Complexes of Neodyme (III).Mol. Cryst. Liq. Cryst.2020,716, 1-12. https://doi.org/10.1080/15421406.2020.1859691