Композиційні матеріали на основі фосфогіпсу для конструктивних шарів дорожнього одягу

1
Національнийуніверситет "Львівськаполітехніка", кафедра автомобільних доріг та мостів
2
Lviv Polytechnic National University, Department of Highways and Bridges
3
Lviv Polytechnic National University, Department of Building Production
4
Lviv Polytechnic National University, department of Highways and Bridges

Стаття містить матеріали досліджень щодо вирішення проблеми утилізації відходів фосфогіпсу через його використання в шарах основи дорожньої конструкції. З цією метою були приготовані композиційні суміші на основі сирого відвального фосфогіпсу. Склад композиційних сумішей оптимізовано таким чином, щоб вміст фосфогіпсу був максимальним. Фосфогіпс стабілізували доменним гранульованим шлаком і портландцементом. Лабораторними випробуваннями встановлено, що композиційні матеріали на основі фосфогіпсу задовольняють вимоги ДСТУ 9177-3:2022 Частина 3, Матеріали укріплені мінеральними в’яжучими, за показниками міцності на одноосьовий стиск і морозостійкості. Х-променевим дифрактометричним аналізом виявлено новоутворені мінеральні фази в процесі гідратації композиційних матеріалів на основі «фосфогіпс-доменний гранульований шлак-портландцемент».

  1. Ivashchenko, T.; Ince, I. Ecological Aspects of Phosphogypsum Utilization Technologies. Visnyk of Chernihiv State Technological University 2014, 2, 223-228. http://ir.stu.cn.ua/123456789/7462
  2. Chernysh, Ye.Yu.; Vaskin, R.A.; Yakhnenko, O.M. Rozrobka ekolohichno bezpechnykh tekhnolohichnykh rishen utylizatsii fosfohipsu v tekhnolohiiakh zakhystu navkolyshnoho seredovyshcha. Ecological Safety and Balanced Use of Resources 2017, 2, 140-
  3. Malanchuk, Z.R.; Korniienko, V.Ya.; Vasylchuk, O.Yu.; Zaiets, V.V. Problemy pererobky ta vyluchennia ridkozemelnykh metaliv z tekhnohennykh rodovyshch fosfohipsu. Science and Education a New Dimension. Natural and Technical Sciences 2018, 179, 55-58. https://doi.org/10.31174/SEND-NT2018-179VI21-14
  4. Malanchuk, Z.; Korniyenko, V.; Malanchuk, Y.; Khrystyuk, A. Results of Experimental Studies of Amber Extraction by Hydromechanical Method in Ukraine. EasternEuropean J. Enterp. Technol. 2016, 3, 24-28 https://doi.org/10.15587/1729-4061.2016.72404
  5. Malanchuk, Z.; Malanchuk, Y.; Korniyenko, V.; Ignatyuk, I. Examining Features of the Process of Heavy Metals Distribution in Technogenic Placers at Hydraulic Mining. EasternEuropean J. Enterp. Technol. 2017, 1, 45-51. https://doi.org/10.15587/1729-4061.2017.92638
  6. Yakhnenko, O.M.; Chernysh, Ye.Yu.; Pliatsuk, L.D.; Trunova, I.O. Samozarostannia vidvalu fosfohipsu yak pokaznyk rivnia tekhnohennoho navantazhennia na dovkillia. Ecological Safety and Balanced Use of Resources 2015, 1, 110-
  7. Tsioka, M.; Voudrias, E. A. Comparison of Alternative Management Methods for Phosphogypsum Waste Using Life Cycle Analysis. J. Clean. Prod. 2020, 266, 121386. https://doi.org/10.1016/j.jclepro.2020.121386
  8. Orlovskyy, V.; Bileckyy, V.; Malovanyy, M. Development of Lightweight Grouting Materials Based on By-Products of Ukrainian Industry. Chem. Chem. Technol. 2023, 17, 666-673 https://doi.org/10.23939/chcht17.03.666
  9. Chaimaâ, D.A.; Khaled, L.; Amina, A.; Kamal, E.O. Moroccan Phosphogypsum Use in Road Engineering: Materials and Structure Optimization. J. Mater. Sci. Eng. A. 2022, 12, 115-130. https://doi.org/10.17265/2161-6213/2022.10-12.002
  10. Folek, S.; Walawska, B.; Wilczek, B.; Miśkiewicz, J. Use of Phosphogypsum in Road Construction. Polish J. Chem. Technol. 2011, 13, 18-22. https://doi.org/10.2478/v10026-011-0018-5
  11. Diouri, C.; Echehbani, I.; Lahlou, K.; Omari, K. E.; Alaoui, A. Valorization of Moroccan Phosphogypsum in Road Engineering: Parametric Study. Materials Today: Proceedings 2022, 58, 1054-1058. https://doi.org/10.1016/j.matpr.2022.01.084
  12. Malkawi, D.A.; Rabab'ah, S.R.; AlSyouf, M.M.; Aldeeky,H. Utilizing Expansive Soil Treated with Phosphogypsum and Lime in Pavement Construction. Results in Engineering 2023, 19, 101256. https://doi.org/10.1016/j.rineng.2023.101256
  13. Amrani, M.; Taha, Y.; Kchikach, A.; Benzaazoua, M.; Hakkou, R. Phosphogypsum Recycling: New Horizons for a More Sustainable Road Material Application. J. Build. Eng. 2020, 30, 101267. https://doi.org/10.1016/j.jobe.2020.101267
  14. Meskini, S.; Samdi, A.; Ejjaouani, H.; Remmal, T. Valorization of Phosphogypsum as a Road Material: Stabilizing Effect of Fly Ash and Lime Additives on Strength and Durability. J. Clean. Prod. 2021, 323, 129161. https://doi.org/10.1016/j.jclepro.2021.129161
  15. Zmemla, R.; Benjdidia, M.; Naifar, I.; Sadik, C.; Elleuch, B.; Sdiri, A. A Phosphogypsum‐Based Road Material with Enhanced Mechanical Properties for Sustainable Environmental Remediation. Environ. Prog. Sustainable Energy 2022, 41, e13732. https://doi.org/10.1002/ep.13732
  16. Shen, W.; Zhou, M.; Zhao, Q. Study on Lime-Fly Ash-Phosphogypsum Binder. Constr Build Mater. 2007, 21, 1480-1485. https://doi.org/10.1016/j.conbuildmat.2006.07.010
  17. Shen, W.; Zhou, M.; Ma, W.; Hu, J.; Cai, Z. Investigation on the Application of Steel Slag-Fly Ash-Phosphogypsum Solidified Material as Road Base Material. J. Hazard. Mater. 2009, 164, 99-104. https://doi.org/10.1016/j.jhazmat.2008.07.125
  18. Orlovskyy, V.; Malovanyy, M.; Bileckyy, V.; Sokur, M. Physico-Chemical Peculiarities of Weighted Thermostable Plugging Materials Hydration. Chem. Chem. Technol. 2021, 15, 599-607. https://doi.org/10.23939/chcht15.04.599
  19. Orlovskyy, V.; Bileckyy, V.; Malovanyy, M. Research of Lime-Ash Plugging Mixtures. Chem. Chem. Technol. 2022, 16, 621-629. https://doi.org/10.23939/chcht16.04.621
  20. Dzhumelia, E.A. Ekolohichna bezpeka hirnycho-khimichnoho pidpryyemstva na stadii likvidatsii. Ph.D. Thesis [Online]; Lviv Polytechnic National University: Lviv, 2020. https://ena.lpnu.ua/handle/ntb/56155 (accessed Aug 7, 2023).
  21. Dvorkin, L.I. Budivelni viazhuchi materialy; Kondor: Rivne, 2019; pp 472-477.
  22. DSTU B V. 2.7-2-93 (National Standard of Ukraine) Building materials. Phosphogyps Conditional for the production of gypsum binder and artificial gypsum stones.
  23. DSTU B EN 197-1:2015 (National Standard of Ukraine) Cement. Part 1: Composition, specifications and conformity criteria for common cements (EN 197-1:2011, IDT).
  24. DSTU 8977:2020 (National Standard of Ukraine) Road Materials, Produced by cold recycling technology. Test methods.
  25. DSTU 9177-3:2022 (National Standard of Ukraine) Crushed stone materials and gravel materials for the road building industry. Part 3. The Materials bound by the mineral binders.
  26. Yefimenko, A.S. Pidvyshchennya vodostiikosti hipsu polifraktsiinymi mineralnymy dobavkamy. Ph.D. Thesis, Ukrainian State University of Railway Transport: Kharkiv, 2021.
  27. Ye, H.; Chen, Z.; Huang, L. Mechanism of Sulfate Attack on Alkali-Activated Slag: The Role of Activator Composition. Cem Concr Res 2019, 125, 105868. https://doi.org/10.1016/j.cemconres.2019.105868
  28. Ivashchyshyn, H.; Sanytsky, M.; Kropyvnytska, T.; Rusyn, B. Study of Low-Emission Multi-Component Cements with a High Content of Supplementary Cementitious Materials. EasternEuropean J. Enterp. Technol. 2019, 4, 39-47. https://doi.org/10.15587/1729-4061.2019.175472
  29. Krivenko, P.; Sanytsky M.; Kropyvnytska T. Alkali-Sulfate Activated Blended Porland Cements. Solid State Phenom. 2018, 276, 9-14. https://doi.org/10.4028/www.scientific.net/SSP.276.9
  30. Marushchak, U.; Sanytsky, M.; Pozniak, O.; Mazurak, O. Peculiarities of Nanomodified Portland Systems Structure Formation. Chem. Chem. Technol. 2019, 13, 510-517 https://doi.org/10.23939/chcht13.04.510
  31. Solodkyy, S.J.; Novytskyi, Y.L.; Topylko, N.I.; Turba, Y.V. Research of Influence of Polymer Additives-Stabilizers on Physical-Mechanical Indicators and Microstructure of Cement Ground. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 708, 012107. https://doi.org/10.1088/1757-899X/708/1/012107