Thermal analysis of composites in the termet system

2013;
: ст. 51 – 56
Автори: 
Halushko O., Farmaga I., Shmigelskyi P.

Lviv Polytechnic National University, CAD Department

Описано основні підходи теплового аналізу композитних матеріалів, які реалізовані у системі Термет. Наведено деякі принципи реалізації МСЕ у системі.

1. Farmaga I. Regu lar and Adaptive Meshing Algorithms for Modeling of Spherical Inclusions by Finite Element Method / I. Farmaga, M. Lobur, P. Shmigelskyi [et al.] // Proc. of the ХІ-th Intern. Conf. Modern Pr oblems o f Rad io Engineer ing, Te lecommunications and Com puter Science ( TCSET'2012). – Lviv-Slavske, 2012. – P. 5 05–507. 2. Fa rmaga I. F inite Element Meshing of Composites with Spherical Inclusions / I. Fa rmaga, M. Lob ur, P. Shm igelskyi [et al .] // Machine D ynamics R esearch. – Po land, Warsaw University of Technology, 2011. – Vol . 35, No. 3 – P. 13–21. – ISSN: 2 080-9948. 3. Farmaga І. Thermal Ana lysis Methods f or Aut omated D esign o f Com posite Ma terials i n TERMET Soft ware / Iho r Farmaga, O leh Ma tviykiv, Mykh aylo Lobur , [et a l.] // Micromechanics an d Micros ystems Eu rope Workshop 2012 (MME 2012), Ilmenau, Germany, 2012. – Session D – D 07. 4. Farmaga I. Generation of Particle R einforced C omposites Models in T ERMET S oftware / Ih or F armaga, K rzysztof K urzydlowski, Marian Lobur [et al.] // Proceedings of the XX Ukrainian-Polish Conference CAD in Machinery Design - Implementation and Educ ational I ssues. – Lvi v, 20 12. – P. 42–43. 5. Y . Saa d, "Itera tive Me thods For Srapse Linear Systems," Society for Industrial and Applyed Mathematics, pp.92-95, 2003. 6. D. M. Young, "Iterative Methods Fo r S olving Par tial D ifference Equations O f Ell iptic Typ e," H arvard U niversity, pp.66–69, 1950. 7. S. Yang, K. Gobbert, "The Optimal Relaxation Parameter for the SOR Method Applied to a Cl assical Mo del P roblem," D epartment of Mathematics and S tatistics, University o f Maryland, pp.15–18, 1950. 8. Saad, Yousef. “Iterative methods for sparse linear systems”, Philadelphia, Pa.: Society for Industrial and Applied Mathematics. p. 195. 2003