Теплофізичні властивості композиційних металонаповнених кополімерів полівінілпіролідону

2024;
: cc. 37 - 43
1
Національний університет “Львівська політехніка”
2
Національний університет “Львівська політехніка”
3
Технічний університет Кошице
4
Технічний університет Кошице, кафедра технологій автоматизованого проектування

Досліджено вплив присутності дрібнодисперсних металевих наповнювачів різної природи (Zn, Co, Ni) на теплофізичні характеристики (теплостійкість за Віка, температура склування) блочних кополімерів полівінілпіролідону з 2-гідроксіетилметакрилатом. Встановлено, що теплостійкість одержаних композитів є значно вищою за теплостійкість ненаповнених кополімерів і лежить у межах 360-395К залежно від природи та вмісту металевого наповнювача. Зміна теплостійкості корелює зі зміною температури склування, яку оцінювали на основі результатів термомеханічного та динамічного механічного термічного аналізів. Результати роботи є додатковим джерелом характеристики структури металонаповнених кополімерів і підтверджують участь частинок металевого наповнювача у формуванні вузлів просторової сітки кополімеру, а також доводять факт утворення різної структури полімерної сітки в міжфазному шарі на поверхні металевої частинки і в об’ємі полімеру.

  1. Nicolais, L.; Carotenuto, G. Metal-polymer nanocomposites; John Wiley & Sons: Hoboken, NJ, USA, 2005.
  2. Kucherenko, A.; Nikitchuk, O.; Baran, N.; Dulebova, L.; Kuznetsova, M.; Moravskyi, V. Characteristics of Metallized Polymeric Raw Materials. In Proceedings of the 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP); IEEE: Odessa, 2021. https://doi.org/10.1109/NAP51885.2021.9568393
  3. Saeed, A.; Zaaba, N.; Ismeel, H. A Review: Metal Filled Thermoplastic Composites. POLYM-PLAST TECH MAT 2021, 60, 1033–1050. https://doi.org/10.1080/25740881.2021.1882489
  4. Hevus, I.; Kohut, A.; Voronov, A. Amphiphilic Invertible Polyurethanes: Synthesis and Properties. Macromolecules 2010, 43, 7488–7494. https://doi.org/10.1021/ma101175k
  5. Los, P.; Lukomska, A.; Jeziorska, R. Metal-Polymer Composites for Electromagnetic Interference Shielding Applications. Polimery 2021, 61, 663–669. https://doi.org/10.14314/polimery.2016.663
  6. Sapronov, O.; Buketov, A.; Yakushchenko, S.; Syzonenko, O.; Sapronova, А.; Sotsenko, V.; Vorobiov, P.; Lypian, Y.; Sieliverstov, I.; Dobrotvor, I. Application of Synthesized Iron/Titanium Carbide Mixture for Restoration of Water Transport Parts by Epoxy Com- posites. Composites: Mechanics, Computations, Applications: An International Journal 2021, 12, 23-35. https://doi.org/10.1615/CompMechComputApplIntJ.2021039175
  7. Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dulebova, L.; Spišák, E. Obtainment and Characterization of Metal-Coated Polyethylene Granules as a Basis for the Development of Heat Storage Systems. Polymers 2022, 14, 218. https://doi.org/10.3390/polym14010218
  8. Yaman, K. Fractal Characterization of Electrical Conductivity and Mechanical Properties of Copper Particulate Polyester Matrix Composites Using Image Processing. Polym. Bull. 2022, 79, 3309–3332. https://doi.org/10.1007/s00289-021-03665-2
  9. Buketov, A.V.; Bagliuk, G.A.; Sizonenko, O.M.; Sapronov,O.O.; Smetankin, S.O.; Torpakov, A.S. Effect of Particulate Ti–Al–TiC Reinforcements on the Mechanical Properties of Epoxy Polymer Composites. Powder Metall. Met. Ceram. 2023, 61, 586–596. https://doi.org/10.1007/s11106-023-00347-8
  10. Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dulebova, L.; Spišák, E.; Majerníková, J. Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials 2020, 13, 2856. https://doi.org/10.3390/ma13122856
  11. Mehvari, S.; Sanchez-Vicente, Y.; González, S.; Lafdi, K. Conductivity Behaviour under Pressure of Copper Micro- Additive/Polyurethane Composites (Experimental and Modelling). Polymers 2022, 14, 1287. https://doi.org/10.3390/polym14071287
  12. Wang, L.; Wang, H.; Huang, X.W.; Song, X.; Hu, M.; Tang, L.; Xue, H.; Gao, J. Superhydrophobic and Superelastic Conductive Rubber Composite for Wearable Strain Sensors with Ultrahigh Sensitivity and Excellent Anti-Corrosion Property. J. Mater. Chem. A 2018, 6, 24523–24533. https://doi.org/10.1039/c8ta07847e
  13. Li, H.; Yang, P.; Pageni, P.; Tang, C. Recent Advances in Metal-Containing Polymer Hydrogels. Macromol. Rapid Commun. 2017, 38, 1700109. https://doi.org/10.1002/marc.201700109
  14. Grytsenko, O.; Dulebova, L.; Spišák, E.; Pukach, P. Metal-Filled Polyvinylpyrrolidone Copolymers: Promising Platforms for Creating Sensors. Polymers 2023, 15, 2259. https://doi.org/10.3390/polym15102259
  15. Kucherenko, A.N.; Moravskyi, V.S.; Kuznetsova, M.Y.; Gryt- senko, O.N.; Masyuk, A.S.; Dulebova, L. Regularities of Obtaining Metal-Filled Polymer Composites. In Nanomaterials in biomedical application and biosensors (NAP-2019); Pogrebnjak, A.; Po- gorielov, M.; Viter, R., Eds; Springer Proceedings in Physics, vol. 244; Springer: Singapore, 2020; pp. 59–66. https://doi.org/10.1007/978-981-15-3996-1_6
  16. Hevus, I.; Kohut, A.; Voronov, A. Micellar Assemblies from Amphiphilic Polyurethanes for Size-Controlled Synthesis of Silver Nanoparticles Dispersible both in Polar and Nonpolar Media. J. Nanopart. Res. 2012, 14, 820. https://doi.org/10.1007/s11051-012- 0820-x.
  17. El-Shamy, A.G. Polymer/Noble Metal Nanocomposites. In Nanocomposites – Recent Evolutions; Sivasankaran, S., Ed.; IntechOpen, London, 2019. https://doi.org/10.5772/intechopen.79016
  18. Khatri, B.; Lappe, K.; Noetzel, D.; Pursche, K.; Hanemann, T. A 3D-Printable Polymer-Metal Soft-Magnetic Functional Compos- ite-Development and Characterization. Materials 2018, 11, 189. https://doi.org/10.3390/ma11020189
  19. Burhannuddin, N.L.; Nordin, N.A.; Mazlan, S.A. Physico- chemical Characterization and Rheological Properties of Magnetic Elastomers Containing Different Shapes of Corroded Carbonyl Iron Particles. Sci. Rep. 2021, 11, 868. https://doi.org/10.1038/s41598- 020-80539-z
  20. Amoabeng, D.; Velankar, S. A Review of Conductive Polymer Composites Filled with Low Melting Point Metal Alloys. Polym.Eng. Sci. 2017, 58, 1010–1019. https://doi.org/10.1002/pen.24774
  21. Grujić, A.; Stajić-Trošić, J.; Stijepović, M.; Stevanović, J.; Aleksić, R. Magnetic and Dynamic Mechanical Properties of Nd- Fe-B Composite Materials with Polymer Matrix. In Metal, Ceramic and Polymeric Composites for Various Uses; Cuppoletti, J., Ed.; InTechOpen: Rijeka, Croatia, 2011; pp. 524–526. https://doi.org/10.5772/18599
  22. Ranga Reddy, P.A.; Mohana Raju, K.; Subbarami Reddy, N. A Review on Polymer Nanocomposites: Monometallic and Bimetallic Nanoparticles for Biomedicial, Optical and Engineering Applica- tions. Chem. Sci. Rev. Lett. 2013, 1, 228–235.
  23. Rozik, N.; Asaad, J.; Mansour, S.; Gomaa, E. Effect of Aluminum and Aluminum/Nickel Hybrid Fillers on the Properties of Epoxy Composites. Proc. Inst. Mech. Eng. L 2016, 230, 550– 557. https://doi.org/10.1177/1464420715581523
  24. Kohut, A.; Voronov, A.; Samaryk, V.; Peukert, W. Amphiphilic Invertible Polyesters as Reducing and Stabilizing Agents in the Formation of Metal Nanoparticles. Macromol. Rapid Commun. 2007, 28, 1410–1414.https://doi.org/10.1002/marc.200700312
  25. Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dziaman, I.; Grytsenko, O.; Dulebova, L. Studying the Effect of Concentration Factors on the Process of Chemical Metallization of Powdered Polyvinylchloride. East. Eur. J. Enterp. Technol. 2018, 3, 40–47. https://doi.org/10.15587/1729-4061.2018.131446
  26. Kuntyi, O.; Mazur, A., Kytsya, A., Karpenko, O., Bazylyak, L., Mertsalo, I., Pokynbroda, T.; Prokopalo, A. Electrochemical Synthesis of Silver Nanoparticles in Solutions of Rhamnolipid. Micro Nano Lett. 2020, 15, 802–807. https://doi.org/10.1049/mnl.2020.0195
  27. Reverberi, A.P.; Salerno, M.; Lauciello, S.; Fabiano, B. Synthesis of Copper Nanoparticles in Ethylene Glycol by Chemical REDUCTION with Vanadium (+2) Salts. Materials 2016, 9, 809. https://doi.org/10.3390/ma9100809
  28. Tarnavchyk, I.; Voronov, A.; Kohut, A.; Nosova, N.; Var- varenko, S.; Samaryk, V.; Voronov, S. Reactive Hydrogel Networks for the Fabrication of Metal-Polymer Nanocomposites. Macromol. Rapid Commun. 2009, 30, 1564–1569. https://doi.org/10.1002/marc.200900285
  29. Grytsenko, O.; Naumenko, O.; Suberlyak, O.; Dulebova, L.; Berezhnyy, B. Optimization of the Technological Parameters of the Graft Copolymerization of 2-Hydroxyethyl Methacrylate with Polyvinylpyrrolidone for Nickel Deposition from Salts. Vopr. Khimii i Khimicheskoi Tekhnologii 2020, 1, 25–32. https://doi.org/10.32434/0321-4095-2020-128-1-25-32
  30.  Moravskyi, V.; Dziaman, I.; Suberliak, S.; Grytsenko, O.; Kuznetsova, M. Features of the Production of Metal-Filled Composites by Metallization of Polymeric Raw Materials. In 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP); IEEE: Odessa, Ukraine, 2017. https://doi.org/10.1109/NAP.2017.8190265
  31. Chudzik, J.; Bieliński, D.M.; Bratychak, M.; Demchuk, Y.; Astakhova, O.; Jędrzejczyk, M.; Celichowski, G. Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires. Part I: Application of Monoperoxy Derivative of Epoxy Resin (PO). Materials 2021, 14, 1320. https://doi.org/10.3390/ma14051320
  32. Sahiner, N.; Butun, S.; Ozay, O.; Dibek, B. Utilization of Smart Hydrogel-Metal Composites as Catalysis Media. J. Colloid  Interface Sci. 2012, 373, 122–128. https://doi.org/10.1016/j.jcis.2011.08.080
  33. Veerubhotla, K.; Lee, C.H. Design of Biodegradable 3D- Printed Cardiovascular Stent. Bioprinting 2022, 26, e00204. https://doi.org/10.1016/j.bprint.2022.e00204
  34. Echeverria, C.; Fernandes, S.N.; Godinho, M.H.; Borges, J.P.; Soares, P.I.P. Functional Stimuli-Responsive Gels: Hydrogels and Microgels. Gels 2018, 4, 54. https://doi.org/10.3390/gels4020054
  35. Pablos, J.L.; Jiménez-Holguín, J.; Salcedo, S.S.; Salinas, A.J.; Corrales, T.; Vallet-Regí, M. New Photocrosslinked 3D Foamed Scaffolds Based on Gelma Copolymers: Potential Application in Bone Tissue Engineering. Gels 2023, 9, 403. https://doi.org/10.3390/gels9050403
  36. Suberlyak, O.; Skorokhoda, V. Hydrogels Based on Polyvinylpyrrolidone Copolymers. In Hydrogels; Haider, S.; Haider, A., Eds.; IntechOpen: London, United Kingdom, 2018; pp. 136–214. https://doi.org/10.5772/intechopen.72082
  37. Khan, S.; Ullah, A.; Ullah, K.; Rehman, N. Insight into Hydrogels. Des Monomers Polym 2016, 19, 456–478. http://dx.doi.org/10.1080/15685551.2016.1169380
  38. Jumadilov, T.; Abilov, Z.; Kondaurov, R.; Himersen, H.; Yeskalieva, G.; Akylbekova, M.; Akimov. A. Influence of Hydrogels Initial State on their Electrochemical and Volume- Gravimetric Properties in Intergel System Polyacrylic Acid Hydrogel and Poly-4-vinylpyridine Hydrogel. Chem. Chem. Technol. 2015, 9, 459–462. https://doi.org/10.23939/chcht09.04.459
  39. Gibas, I.; Janik, H. Review: Synthetic Polymer Hydrogels for Biomedical Applications. Chem. Chem. Technol. 2010, 4, 297–304. https://doi.org/10.23939/chcht04.04.297
  40. Maikovych, O.; Nosova, N.; Yakoviv, M.; Dron, І.; Stasiuk, A.; Samaryk, V.; Voronov, S. Composite Materials Based on Polyacrylamide and Gelatin Reinforced with Polypropylene Microfiber. Vopr. Khimii i Khimicheskoi Tekhnologii 2021, 1, 45–54
  41. Majcher, M.J.; Hoare, T. Applications of Hydrogels. In Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series; Jafar Mazumder, M.; Sheardown, H.; Al-Ahmed, A., Eds.; Springer, Cham. 2019; pp 453–490. https://doi.org/10.1007/978-3-319-95990-0_17
  42. Bercea, M. Bioinspired Hydrogels as Platforms for Life- Science Applications: Challenges and Opportunities. Polymers 2022, 14, 2365. https://doi.org/10.3390/polym14122365
  43. Zhang, Y.S; Khademhosseini, A. Advances in Engineering Hydrogels. Science 2017, 356, eaaf3627. https://doi.org/10.1126/science.aaf3627
  44. Dong, W.; Yao, D.; Yang, L. Soft Bimodal Sensor Array Based on Conductive Hydrogel for Driving Status Monitoring. Sensors 2020, 20, 1641. https://doi.org/10.3390/s20061641
  45. Samaryk, V.; Varvarenko, S.; Nosova, N.; Fihurka, N.; Musyanovych, A.; Landfester, K.; Popadyuk, N.; Voronov, S. Optical Properties of Hydrogels Filled with Dispersed Nanoparticles. Chem. Chem. Technol. 2017, 11, 449–453. https://doi.org/10.23939/chcht11.04.449
  46. Grytsenko, O.; Dulebova, L.; Suberlyak, O.; Skorokhoda, V.; Spišák, E.; Gajdos, I. Features of Structure and Properties of pHEMA-gr-PVP Block Copolymers, Obtained in the Presence of Fe2+. Materials 2020, 13, 4580. https://doi.org/10.3390/ma13204580
  47. Grytsenko, O.; Dulebova, L.; Spišák, E.; Berezhnyy, B. New Materials Based on Polyvinylpyrrolidone-Containing Copolymers with Ferromagnetic Fillers. Materials 2022, 15, 5183. https://doi.org/10.3390/ma15155183
  48. Grytsenko, О.; Pukach, P.; Suberlyak, O.; Moravskyi, V.; Kovalchuk, R.; Berezhnyy, B. The Scheffe’s Method in the Study of Mathematical Model of the Polymeric Hydrogels Composite Structures Optimization. Math. Model. Comput. 2019, 6, 258–267. https://doi.org/10.23939/mmc2019.02.258
  49. Grytsenko, O.; Pukach, P.; Suberlyak, O.; Shakhovska, N.; Karovič Jr., V. Usage of Mathematical Modeling and Optimization in Development of Hydrogel Medical Dressings Production. Elec- tronics 2021, 10, 620. https://doi.org/10.3390/electronics10050620
  50. [Suberlyak, O.; Grytsenko, O.; Baran, N.; Yatsulchak, G.; Berezhnyy, B. Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chem. Chem. Technol. 2020, 14, 312–317. https://doi.org/10.23939/chcht14.03.312