Керування термохімічними перетвореннями компонентів зв’язуючих матеріалів кам'яновугільного походження

2024;
: cc. 442 - 448
1
State Enterprise "Ukrainian State Research Institute for Carbochemistry (UKHIN), management department Kharkiv, Ukraine
2
State Enterprise "Ukrainian State Research Institute for Carbochemistry" (SE "UKHIN")
3
Ukrainian State Research Institute for Carbochemistry
4
State Enterprise "Ukrainian State Research Institute for Carbochemistry" (SE "UKHIN")
5
National Technical University "Kharkiv Polytechnic Institute"

Проаналізовано можливість розглядати кам’яновугільний пек як матеріал, придатний для дослідницького моделювання процесів термохімічних перетворень пластичної маси карбонізації вугілля та її взаємодії з твердою вуглецевою фазою. Показано можливості керування властивостями кам'яновугільного пеку та доменного коксу при його виготовленні добавками апротонової кислоти в присутності співкаталізатора.

[1] Arani, H.F.; Mirhabibi, A.R.; Collins, S.; Daroughegi, R.; Khalife Soltani, A.; Naghizadeh, R.; Riahi-Noori, N.; Aghababazadeh, R.; Westwood A. Enhancement in Graphitization of Coal Tar Pitch by Functionalized Carbon Nanotubes. RSC Adv. 2017, 7, 5533–5540. https://doi.org/10.1039/C6RA25441A

[2] Chesko, F.F.; Borisenko, A.L.; Martynova, A.Yu.; Shmalko, V.M.; Zelenskii, O.I. The Possibility of Reducing the Carcinogenicity of Coal Tar Electrode Pitches. Pet. Coal [Online] 2018; 60, 584–591. https://www.vurup.sk/wp- content/uploads/2018/06/PC_4_2018_Chesko_29.pdf (accessed May 31, 2018).

[3] Kovalev, E.T.; Cheshko, F.F.; Ponomarenko, N.V. The Use of Coke–Chemical Materials to the Regulation of the Electrode Coal Tar Pitch Quality. Pet. Coal [Online] 2021, 63, 317–323. https://www.vurup.sk/wp-content/uploads/2021/03/PC- X_Chesko_227-002.pdf (accessed May 31, 2018).

[4] Cheshko, F.F., Shustykov, V.I. Katalitychnyy vplyv na hrupovyy ta khimichnyy sklad kam'yanovuhilʹnoho peku. In Problemy katalizu u vuhlekhimiyi; Zbirnyk naukovykh prats AN Ukrainy; Naukova dumka: Kyiv, 1992; pp. 289–291.

[5] Crespo, J.L.; Arenillas, A.; Vina, J.A.; García, R.; Snape, C.E.; Moinelo, S.R. Effect of the Polymerization with Formaldehyde on the Thermal Reactivity of a Low-Temperature Coal Tar Pitch.

Energy Fuels 2005, 19, 374–381. https://doi.org/10.1021/ef0498768 [6] Wang, Y.; Zhou, Q.; Zhao, Q; Qu, S.; Zhang, Y. Study on Relationships between Coal Microstructure and Coke Quality during Coking Process. Processes 2023, 11, 724. https://doi.org/10.3390/pr11030724

[7] Nesterenko, L.L.; Biryukov, Yu.V.; Lebedyev, V.A. Osnovy khimii ta fizyky horyuchykh kopalyn; Vyshcha shkola: Kyiv, 1987.

[8] Liu, Yu.-Ch.; Hung, Yu.-H.H.; Sutarsis, Ch.-Ch. H.; Ni, Ch.-Sh.; Liu, T.-Yi.; Chang, J.-K.; Chen, H.-Y. Effects of Surface Functional Groups of Coal-Tar-Pitch-Derived Nanoporous Carbon Anodes on Microbial Fuel Cell Performance. Renew. Energy 2021, 171, 87–94. https://doi.org/10.1016/j.renene.2021.01.149

[9] Sarkar, A.; Kocaefe, D.; Kocaefe, Y.; Bhattacharyay, D.; Sarkar, D.; Morais, B.; Chabot, J. Coke-Pitch Interactions During Anode Preparation. Fuel 2014, 117A, 598–607 https://doi.org/10.1016/j.fuel.2013.09.015

[10] Lee, S.-H.; Roh, J.-S. Changes in Functional Groups and Crystal Structure of Coal Tar Pitch with Respect to Carbonization Temperature. Crystals 2024, 14, 1–13. https://doi.org/10.3390/cryst14020122.

[11] Imangazy, A.; Smagulova, G.; Kaidar, B.; Mansurov, Z.; Kerimkulova, A.; Umbetkaliev, K.; Zakhidov, A.; Vorobyev, P.; Jumadilov, T. Compositional Fibers Based on Coal Tar Mesophase Pitch Obtained by Electrospinning Method. Chem. Chem. Technol. 2021, 15, 403–407. https://doi.org/10.23939/chcht15.03.403

[12] Marsh, H.; Neavel, R.C. Carbonization and Liquid-crystal (Mesophase) Development. 15. A common Stage in Mechanisms of Coal Liquefaction and of Coal Blends for Coke Making. Fuel 1980, 59, 511–513. https://doi.org/10.1016/0016-2361(80)90179-9

[13] Kim, J.-H.; Hwang, H.-I.; Im, J.-S. Coal Carbonization: Formation, Properties and Relevance of Microstructures in Resultant Cokes. Materials 2023, 16, 4084. https://doi.org/10.3390/ma16114084

[14] Bégin, D.; Alain, E.; Furdin, G.; Marêché, F. Pyrolysis of Coal Tar Pitch and its Mixtures with a Graphite-FeCl3 Intercalated Compound. Influence of Heating Rate and GIC Concentration. Fuel 1995, 74, 139–146. https://doi.org/10.1016/0016-2361(95)92646-N

[15] Odian, G. Principles of Polymerization, 4th ed.; Wiley- Interscience: Hoboken, NJ, 2004.

[16] Chen, L.; Guo, F.; Wu, J.; Li, P.; Zhang, Y. Research on Coal Tar Pitch Catalytic Oxidation and Its Effect on the Emission of PAHs during Co-Carbonation with Coal. Catalysts 2021, 11, 1–15. https://doi.org/10.3390/catal11121428

[17] Tulepov, M.; Sassykova, L.; Kerimkulova, A.; Tureshova, G.; Abdrakova, F.; Zhapekova, A.; Sultanova, Z.; Spanova, G.; Tolep, D.; Gabdrashova, Sh.; Baiseitov, D. Preparation of Briquettes on the Basis of Sub-Standard Coal of Kazakhstan Fields. Chem. Chem.Technol. 2022, 16, 118–125.https://doi.org/10.23939/chcht16.01.118

[18] Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements; Elsevier, 2012.

[19] Chemist's Handbook; V. II; STPH of Chem. Lit, 1951.

[20] Kaftan, Yu.S; Drozdnik, I.D.; Miroshnichenko, D.V.;Bidolenko, N.B.; Ryshchenko, A.I. Relationship between Organic and Mineral Parts of Coal Blend and “Hot” and “Cold” Coke Strength. Journal of Coal Chemistry 2007, 3–4, 3–13.

[21] Galushko, A.A.; Lysik, N.A.; Miroshnichenko, D.V.; Litvinenko, O.V. Spectrometrical Analysis for the Determination of the Chemical Composition of Ash of Coal Concentrates (Blends) at PJSC “EVRAZ YUZKOKS”. Journal of Coal Chemistry 2017, 4, 3–11.