Вплив краун-етерів і полігліколів на показники сталості процесу окиснення циклогексану

2024;
: cc. 379 - 385
1
Національний університет “Львівська політехніка”
2
Національний університет “Львівська політехніка”
3
Національний університет “Львівська політехніка”

Добавки краун-етеру або полігліколю до каталізаторів - солей перехідних металів - покращують як показники ефективності, такі як конверсія циклогексану та селективність утворення цільових продуктів, так і показники сталості процесу окиснення. Показано, що вплив органічних добавок на показники сталості зумовлений, насамперед, значним (до 14,3%) підвищенням селективності утворення цільових продуктів окиснення циклогексану.

[1] Khirsariya, P.; Mewada, R Review of a Cyclohexane Oxidation Reaction Using Heterogenous Catalyst. International Journal of Engineering Development and Research 2014, 2, 3911–3914.

[2] Melnyk, Yu.; Reutskyy, V.; Melnyk, S.; Starchevskyy, V.; Reutskyy, V. Catalytic Oxidation of Organic Compounds in the Presence of Crown-ethers. Chem. Eng. Trans. 2011, 24, 163–168. https://doi.org/10.3303/CET1124028

[3] Melnyk, Yu.; Reutskyy, V.; Reutskyy, Vol.; Starchevskyy, V. Influence of Complex-Creative Additives on Oxidation of Hydrocarbons. Chem. Chem. Technol. 2014, 8, 177–182. https://doi.org/10.23939/chcht08.02.177

[4] Song, X.; Hao, J.; Bai, Y.; Han, L.; Yan, G.; Lian, X.; Liu, J. Solvent-free Oxidation of Cyclohexane by Oxygen over Al-Cu-Co Alloys: Influence of the Phase Structure and Electrical Conductivity on Catalytic Activity. New J. Chem. 2017, 41, 4031–4039. https://doi.org/10.1039/c7nj00238f.

[5] Ludyn, A.; Reutskyy, Vol.; Reutskyy, V.; Hrynchuk, Y. Influence of amino acids and alcohols on catalytic oxidation of cyclohexane. Chem. Chem. Technol. 2021, 15, 352–358. https://doi.org/10.23939/chcht15.03.352

[6] Xu, L-X.; He, C-H.; Zhu, M-Q.; Wu, K-J.; Lai, Y-L. Silica- Supported Gold Catalyst Modified by Doping with Titania for Cyclohexane Oxidation. Catal. Letters 2007, 118, 248–253. https://doi.org/10.1007/s10562-007-9178-6

[7] Machado, P.M.A.; Lube, L.M.; Tiradentes, M.D.E.; Fernandes, C.; Gomes, C.A.; Stumbo, A.M.; San Gil, R.A.S.; Visentin, L.C.; Sanchez, D.R.; Frescura, V.L.A. et al. Synthesis, Characterization and Activity of Homogeneous and Heterogeneous (SiO2, NaY, MCM-41) Iron (III) Catalysts on Cyclohexane and Cyclohexene Oxidation. Appl. Catal. A: Gen. 2015, 507, 119–129. https://doi.org/10.1016/j.apcata.2015.09

[8] Hao, J.; Wang, J.; Wang, Q.; Yu, Y.; Cai, S.; Zhao, F. Catalytic Oxidation of Cyclohexane over Ti-Zr-Co Catalysts. Appl. Catal. A: Gen. 2009, 368, 29–34. https://doi.org/10.1016/j.apcata.2009.08.007

[9] Zhou, L.; Xu, J.; Miao, H.; Wang, F.; Li, X. Catalytic Oxidation of Cyclohexane to Cyclohexanol and Cyclohexanone over Co3O4 Nanocrystals with Molecular Oxygen. Appl. Catal. A: Gen. 2005, 292, 223–228. https://doi.org/10.1016/j.apcata.2005.06.018

[10] Lesbani, A.; Setyowati, M.; Mohadi, R.; Rohendi, D. Oxidation of Cyclohexane to Cyclohexanol and Cyclohexanone Using H4[α- SiW12O40] / Zr as Catalyst. Molekul 2016, 11, 53–60. https://doi.org/10.20884/1.jm.2016.11.1.194

[11] Lesbani, A.; Fatmawati, F.; Mohadi, R.; Fithri, N.A.; Rohendi, D. Oxidation of Cyclohexane to Cyclohexanol and Cyclohexanone Over H4[α-SiW12O40] / TiO2 Catalyst. Indones. J. Chem. 2016, 16, 175–180. https://doi.org/10.22146/ijc.21161

[12] Mncube, S.G.; Bala, M.D. Homogeneous oxidation reactions cataly- sed byin Situ-Generated Triazolylidene Copper (I) Complexes. Transit. Met. Chem. 2018, 44, 145–151. https://doi.org/10.1007/s11243-018-0278-5.

[13] Rekkab-Hammoumraoui, I.; Choukchou-Braham, A.; Pirault-Roy, L.; Kappenstein, C. Catalytic Oxidation of Cyclohexane to Cyclohexanone and Cyclohexanol by tert-Butyl Hydroperoxide over Pt/Oxide Catalysts. Bull. Mater. Sci. 2011, 34, 1127–1135. https://doi.org/10.1007/s12034-011-0157-6

[14] Andrade, M.A.; Martins, L.M.D.R.S. Sustainability in Catalytic Cyclohexane Oxidation: The Contribution of Porous Support Materials. Catalysts 2019, 10, 2. https://doi.org/10.3390/catal10010002

[15] Heydari, S.; Habibi, D.; Faraji, A. A Green and Efficient Solvent- and Catalyst-Free Ultrasonic Dibenzylation Procedure. Chem. Chem. Technol. 2022, 16, 126–132. https://doi.org/10.23939/chcht16.01.126

[16] Lap, M.; Kanbur, Y.; Tayfun, Ü. The Use of Mussel Shell as a Bio- Additive for Poly(Lactic Acid) Based Green Composites. Chem. Chem. Technol. 2021, 15, 621–626. https://doi.org/10.23939/chcht15.04.621.

[17] Martinez-Guerra, E.; Gude, V.G. Assessment of Sustainability Indicators for Biodiesel Production. Applied Sciences 2017, 7, 869. https://doi.org/10.3390/app7090869

[18] Melnyk, Yu.; Melnyk, S.; Mahorivska, H. The Assessment of Sustainability Indicators for Triglycerides Transesterification with Alcohols Catalyzed by Ion Exchange Resins. Vopr. khimii i khimicheskoi tekhnologii 2023, 4, 58–68. https://doi.org/10.32434/0321-4095-2023-149-4-58-68

[19] Pradhan, P.; Karan, P.; Chakraborty, R. Life Cycle Sustainability Assessment of Optimized Biodiesel Production from Used Rice Bran Oil Employing Waste Derived-Hydroxyapatite Supported Vanadium Catalyst. Environ. Sci. Pollut. Res. 2022, 29, 20064–20077. https://doi.org/10.1007/s11356-021-16482-x