The crown ether or polyglycol additives to transition metal catalysts improve both the performance indicators, such as cyclohexane conversion, selectivity of target products, and the sustainability indicators of the oxidation process. It has been shown that the effect of the organic additives on the sustainability indicators is primarily due to a significant (up to 14.3%) increase in the selectivity of target cyclohexane oxidation products.
[1] Khirsariya, P.; Mewada, R Review of a Cyclohexane Oxidation Reaction Using Heterogenous Catalyst. International Journal of Engineering Development and Research 2014, 2, 3911–3914.
[2] Melnyk, Yu.; Reutskyy, V.; Melnyk, S.; Starchevskyy, V.; Reutskyy, V. Catalytic Oxidation of Organic Compounds in the Presence of Crown-ethers. Chem. Eng. Trans. 2011, 24, 163–168. https://doi.org/10.3303/CET1124028
[3] Melnyk, Yu.; Reutskyy, V.; Reutskyy, Vol.; Starchevskyy, V. Influence of Complex-Creative Additives on Oxidation of Hydrocarbons. Chem. Chem. Technol. 2014, 8, 177–182. https://doi.org/10.23939/chcht08.02.177
[4] Song, X.; Hao, J.; Bai, Y.; Han, L.; Yan, G.; Lian, X.; Liu, J. Solvent-free Oxidation of Cyclohexane by Oxygen over Al-Cu-Co Alloys: Influence of the Phase Structure and Electrical Conductivity on Catalytic Activity. New J. Chem. 2017, 41, 4031–4039. https://doi.org/10.1039/c7nj00238f.
[5] Ludyn, A.; Reutskyy, Vol.; Reutskyy, V.; Hrynchuk, Y. Influence of amino acids and alcohols on catalytic oxidation of cyclohexane. Chem. Chem. Technol. 2021, 15, 352–358. https://doi.org/10.23939/chcht15.03.352
[6] Xu, L-X.; He, C-H.; Zhu, M-Q.; Wu, K-J.; Lai, Y-L. Silica- Supported Gold Catalyst Modified by Doping with Titania for Cyclohexane Oxidation. Catal. Letters 2007, 118, 248–253. https://doi.org/10.1007/s10562-007-9178-6
[7] Machado, P.M.A.; Lube, L.M.; Tiradentes, M.D.E.; Fernandes, C.; Gomes, C.A.; Stumbo, A.M.; San Gil, R.A.S.; Visentin, L.C.; Sanchez, D.R.; Frescura, V.L.A. et al. Synthesis, Characterization and Activity of Homogeneous and Heterogeneous (SiO2, NaY, MCM-41) Iron (III) Catalysts on Cyclohexane and Cyclohexene Oxidation. Appl. Catal. A: Gen. 2015, 507, 119–129. https://doi.org/10.1016/j.apcata.2015.09
[8] Hao, J.; Wang, J.; Wang, Q.; Yu, Y.; Cai, S.; Zhao, F. Catalytic Oxidation of Cyclohexane over Ti-Zr-Co Catalysts. Appl. Catal. A: Gen. 2009, 368, 29–34. https://doi.org/10.1016/j.apcata.2009.08.007
[9] Zhou, L.; Xu, J.; Miao, H.; Wang, F.; Li, X. Catalytic Oxidation of Cyclohexane to Cyclohexanol and Cyclohexanone over Co3O4 Nanocrystals with Molecular Oxygen. Appl. Catal. A: Gen. 2005, 292, 223–228. https://doi.org/10.1016/j.apcata.2005.06.018
[10] Lesbani, A.; Setyowati, M.; Mohadi, R.; Rohendi, D. Oxidation of Cyclohexane to Cyclohexanol and Cyclohexanone Using H4[α- SiW12O40] / Zr as Catalyst. Molekul 2016, 11, 53–60. https://doi.org/10.20884/1.jm.2016.11.1.194
[11] Lesbani, A.; Fatmawati, F.; Mohadi, R.; Fithri, N.A.; Rohendi, D. Oxidation of Cyclohexane to Cyclohexanol and Cyclohexanone Over H4[α-SiW12O40] / TiO2 Catalyst. Indones. J. Chem. 2016, 16, 175–180. https://doi.org/10.22146/ijc.21161
[12] Mncube, S.G.; Bala, M.D. Homogeneous oxidation reactions cataly- sed byin Situ-Generated Triazolylidene Copper (I) Complexes. Transit. Met. Chem. 2018, 44, 145–151. https://doi.org/10.1007/s11243-018-0278-5.
[13] Rekkab-Hammoumraoui, I.; Choukchou-Braham, A.; Pirault-Roy, L.; Kappenstein, C. Catalytic Oxidation of Cyclohexane to Cyclohexanone and Cyclohexanol by tert-Butyl Hydroperoxide over Pt/Oxide Catalysts. Bull. Mater. Sci. 2011, 34, 1127–1135. https://doi.org/10.1007/s12034-011-0157-6
[14] Andrade, M.A.; Martins, L.M.D.R.S. Sustainability in Catalytic Cyclohexane Oxidation: The Contribution of Porous Support Materials. Catalysts 2019, 10, 2. https://doi.org/10.3390/catal10010002
[15] Heydari, S.; Habibi, D.; Faraji, A. A Green and Efficient Solvent- and Catalyst-Free Ultrasonic Dibenzylation Procedure. Chem. Chem. Technol. 2022, 16, 126–132. https://doi.org/10.23939/chcht16.01.126
[16] Lap, M.; Kanbur, Y.; Tayfun, Ü. The Use of Mussel Shell as a Bio- Additive for Poly(Lactic Acid) Based Green Composites. Chem. Chem. Technol. 2021, 15, 621–626. https://doi.org/10.23939/chcht15.04.621.
[17] Martinez-Guerra, E.; Gude, V.G. Assessment of Sustainability Indicators for Biodiesel Production. Applied Sciences 2017, 7, 869. https://doi.org/10.3390/app7090869
[18] Melnyk, Yu.; Melnyk, S.; Mahorivska, H. The Assessment of Sustainability Indicators for Triglycerides Transesterification with Alcohols Catalyzed by Ion Exchange Resins. Vopr. khimii i khimicheskoi tekhnologii 2023, 4, 58–68. https://doi.org/10.32434/0321-4095-2023-149-4-58-68
[19] Pradhan, P.; Karan, P.; Chakraborty, R. Life Cycle Sustainability Assessment of Optimized Biodiesel Production from Used Rice Bran Oil Employing Waste Derived-Hydroxyapatite Supported Vanadium Catalyst. Environ. Sci. Pollut. Res. 2022, 29, 20064–20077. https://doi.org/10.1007/s11356-021-16482-x