Було одержано ряд гідрогелів на основі желатину та детально вивчено вплив різних зшиваючих агентів і вмісту агару. Результати показують, що бура і глутаральдегід є хорошими зшиваючими агентами. Крім того, усі зразки були описані утрудненою фіківською дифузією води, що робить їх цікавим вибором для медичних застосувань.
[1] Suberlyak, S.; Petrina, R.; Grytsenko, O.; Baran, N.; Komar, A.; Berezhnyy, B. Investigation of the Sorption Capacity of Polyvinylpyrrolidone Copolymers As the Basis of Hydrogel Cosmetic Masks with Plant Biomass Extracts. Chem. Chem. Technol. 2022, 16, 555–563.https://doi.org/10.23939/chcht16.04.555
[2] Jacob, S.; Nair, A. B.; Shah, J.; Sreeharsha, N.; Gupta, S.; Shinu, P. Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics 2021, 13, 357. https://doi.org/10.3390/pharmaceutics13030357
[3] Bukartyk, M. M.; Nosova, N. G.; Maikovych, O. V.; Bukartyk, N. M.; Stasiuk, A. V.; Dron, I. A.; Fihurka, N. V.; Khomyak, S. V.; Ostapiv, D. D.; Vlizlo, V. V., et al. Preparation and Research of Properties of Combined Alginate/Gelatin Hydrogels. J. Chem. Technol. 2022, 30, 11–20. https://doi.org/10.15421/jchemtech.v30i1.242230
[4] Qiao, C.; Cao, X.; Wang, F. Swelling Behavior Study of Physically Crosslinked Gelatin Hydrogels. Polym. Polym. Compos. 2012, 20, 53–58. https://doi.org/10.1177/0967391112020001-210
[5] Pandey, P. M.; Nayak, S. K.; Shaw, G. S.; Uvanesh, K.; Banerjee, I.; Al-Zahrani, S. M.; Anis, A.; Pal, K. An in-Depth Analysis of the Swelling, Mechanical, Electrical, and Drug Release Properties of Agar-Gelatin Co-Hydrogels. Polym. Plast. Technol. Eng. 2017, 56, 667–677. https://doi.org/10.1080/03602559.2016.1211694
[6] Liu, T.; Zhang, Y.; Sun, M.; Jin, M.; Xia, W.; Yang, H.; Wang, T. Effect of Freezing Process on the Microstructure of Gelatin Methacryloyl Hydrogels. Front. Bioeng. Biotechnol. 2021, 9. https://doi.org/10.3389/fbioe.2021.810155
[7] Omer, A. M.; Sadik, W. A.-A.; El-Demerdash, A.-G. M.; Hassan, H. S. Formulation of PH-Sensitive Aminated Chitosan– Gelatin Crosslinked Hydrogel for Oral Drug Delivery. J. Saudi Chem. Soc. 2021, 25, 101384. https://doi.org/10.1016/j.jscs.2021.101384
[8] Alipal, J.; Mohd Pu’ad, N. A. S.; Lee, T. C.; Nayan, N. H.; Sahari, N.; Basri, H.; Idris, M. I.; Abdullah, H. Z. A Review of Gelatin: Properties, Sources, Process, Applications, and Commercialisation. Mater. Today Proc. 2021, 42, 240–250. https://doi.org/10.1016/j.matpr.2020.12.922
[9] Mohanto, S.; Narayana, S.; Merai, K. P.; Kumar, J. A.; Bhunia, A.; Hani, U.; Al Fatease, A.; Gowda, B. H. J.; Nag, S.; Ahmed, M. G., et al. Advancements in Gelatin-Based Hydrogel Systems for Biomedical Applications: A State-of-the-Art Review. Int. J. Biol. Macromol. 2023, 253, 127143. https://doi.org/10.1016/j.ijbiomac.2023.127143
[10] Mushtaq, F.; Raza, Z.A.; Batool, S. R.; Zahid, M.; Onder, O. C.; Rafique, A.; Nazeer, M. A. Preparation, Properties, and Applications of Gelatin-Based Hydrogels (GHs) in the Environmental, Technological, and Biomedical Sectors. Int. J. Biol. Macromol. 2022, 218, 601–633. https://doi.org/10.1016/j.ijbiomac.2022.07.168
[11] Skopinska-Wisniewska, J.; Tuszynska, M.; Olewnik- Kruszkowska, E. Comparative Study of Gelatin Hydrogels Modified by Various Cross-Linking Agents. Materials (Basel) 2021, 14, 396. https://doi.org/10.3390/ma14020396
[12] Yang, Z.; Hemar, Y.; Hilliou, L.; Gilbert, E. P.; McGillivray, D.J.; Williams, M. A. K.; Chaieb, S. Nonlinear Behavior of Gelatin Networks Reveals a Hierarchical Structure. Biomacromolecules 2016, 17, 590–600. https://doi.org/10.1021/acs.biomac.5b01538
[13] Maikovych, O.; Nosova, N.; Bukartyk, N.; Fihurka, N.; Ostapiv, D.; Samaryk, V.; Pasetto, P.; Varvarenko, S. Gelatin-Based Hydrogel with Antiseptic Properties: Synthesis and Properties. Appl. Nanosci. 2023, 13, 7611–7623. https://doi.org/10.1007/s13204-023-02956-6
[14] Ali, S.; Ranjha, N. M.; Ahmad, B.; Khan, A. A.; Hassan, F. U.; Aziz, T.; Alharbi, M.; Alshammari, A.; Alasmari, A. F.; Alharbi, M. E. Sustained Release of Drug Facilitated Through Chemically Crosslinked Polyvinyl Alcohol-Gelatin (PVA-GE) Hydrogels. A Sustainable Biomedical Approach. Polish J. Chem. Technol. 2023, 25, 56–65. https://doi.org/10.2478/pjct-2023-0017
[15] Moshayedi, S.; Sarpoolaky, H.; Khavandi, A. Fabrication, Swelling Behavior, and Water Absorption Kinetics of Genipin ‐ crosslinked Gelatin–Chitosan Hydrogels. Polym. Eng. Sci. 2021, 61,3094–3103. https://doi.org/10.1002/pen.25821
[16] Dron, I.; Nosovа, N.; Fihurka, N.; Bukartyk, N.; Nadashkevych, Z.; Varvarenko, S.; Samaryk, V. Investigation of Hydrogel Sheets Based on Highly Esterified Pectin. Chem. Chem. Technol. 2022, 16, 220–226. https://doi.org/10.23939/chcht16.02.220
[17] Heidarian, P.; Kouzani, A. Z. A Self-Healing Nanocomposite Double Network Bacterial Nanocellulose/Gelatin Hydrogel for Three Dimensional Printing. Carbohydr. Polym. 2023, 313, 120879. https://doi.org/10.1016/j.carbpol.2023.120879
[18] Kundakci, S.; Öǧüt, H. G.; Üzüm, Ö. B.; Karadaǧ, E. Swelling Characterization and Adsorptive Features of Acrylamide/Itaconic Acid Hydrogels and Semi-IPNs for Uranyl Ions. Polym.-Plast. Technol. Mater. 2012, 51, 1550–1561. https://doi.org/10.1080/03602559.2012.716132
[19] Uspenskaya, M. V.; Sitnikova, V. E.; Dovbeta, M. A.; Olekhnovich, R. O.; Denisyuk, I. Y. Sorption Properties of Clay and Pectin-Containing Hydrogels. Recent Res. Polym. 2018. https://doi.org/10.5772/intechopen.71190
[20] Katime, I.; Mendizábal, E. Swelling Properties of New Hydrogels Based on the Dimethyl Amino Ethyl Acrylate Methyl Chloride Quaternary Salt with Acrylic Acid and 2-Methylene Butane-1,4-Dioic Acid Monomers in Aqueous Solutions. Mater. Sci. Appl. 2010, 01, 162–167.https://doi.org/10.4236/msa.2010.13026
[21] Sharma, S.; Dua, A.; Malik, A. Biocompatible Stimuli Responsive Superabsorbent Polymer for Controlled Release of GHK-Cu Peptide for Wound Dressing Application. J. Polym. Res. 2017, 24, 1–8. https://doi.org/10.1007/s10965-017-1254-z
[22] Fosca, M.; Rau, J. V.; Uskoković, V. Factors Influencing the Drug Release from Calcium Phosphate Cements. Bioact. Mater. 2022, 7, 341–363. https://doi.org/10.1016/j.bioactmat.2021.05.032
[23] Bukhari, S. M. H.; Khan, S.; Rehanullah, M.; Ranjha, N. M. Synthesis and Characterization of Chemically Cross-Linked Acrylic Acid/Gelatin Hydrogels: Effect of PH and Composition on Swelling and Drug Release. Int. J. Polym. Sci. 2015, 2015, 1–15. https://doi.org/10.1155/2015/187961
[24] Xing, Q.; Yates, K.; Vogt, C.; Qian, Z.; Frost, M.C.; Zhao, F. Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal. Sci. Rep. 2014, 4, 4706. https://doi.org/10.1038/srep04706
[25] Peppas, N. A.; Merrill, E. W. Poly (Vinyl Alcohol) Hydrogels: Reinforcement of Radiation-crosslinked Networks by Crystallization. J. Polym. Sci. Polym. Chem. Ed. 1976, 14, 441–457. https://doi.org/10.1002/pol.1976.170140215
[26] Hoti, G.; Caldera, F.; Cecone, C.; Rubin Pedrazzo, A.; Anceschi, A.; Appleton, S. L.; Khazaei Monfared, Y.; Trotta, F. Effect of the Cross-Linking Density on the Swelling and Rheological Behavior of Ester-Bridged β-Cyclodextrin Nanosponges. Materials (Basel) 2021, 14, 478. https://doi.org/10.3390/ma14030478