A series of gelatin-based hydrogels was prepared, and the effects of different crosslinking agents and agar content were studied in detail. Results indicate that borax and glutaraldehyde are good crosslinking agents. Moreover, all samples were described with a hindered Fickian water diffusion, making it an interesting choice for medical applications.
[1] Suberlyak, S.; Petrina, R.; Grytsenko, O.; Baran, N.; Komar, A.; Berezhnyy, B. Investigation of the Sorption Capacity of Polyvinylpyrrolidone Copolymers As the Basis of Hydrogel Cosmetic Masks with Plant Biomass Extracts. Chem. Chem. Technol. 2022, 16, 555–563.https://doi.org/10.23939/chcht16.04.555
[2] Jacob, S.; Nair, A. B.; Shah, J.; Sreeharsha, N.; Gupta, S.; Shinu, P. Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics 2021, 13, 357. https://doi.org/10.3390/pharmaceutics13030357
[3] Bukartyk, M. M.; Nosova, N. G.; Maikovych, O. V.; Bukartyk, N. M.; Stasiuk, A. V.; Dron, I. A.; Fihurka, N. V.; Khomyak, S. V.; Ostapiv, D. D.; Vlizlo, V. V., et al. Preparation and Research of Properties of Combined Alginate/Gelatin Hydrogels. J. Chem. Technol. 2022, 30, 11–20. https://doi.org/10.15421/jchemtech.v30i1.242230
[4] Qiao, C.; Cao, X.; Wang, F. Swelling Behavior Study of Physically Crosslinked Gelatin Hydrogels. Polym. Polym. Compos. 2012, 20, 53–58. https://doi.org/10.1177/0967391112020001-210
[5] Pandey, P. M.; Nayak, S. K.; Shaw, G. S.; Uvanesh, K.; Banerjee, I.; Al-Zahrani, S. M.; Anis, A.; Pal, K. An in-Depth Analysis of the Swelling, Mechanical, Electrical, and Drug Release Properties of Agar-Gelatin Co-Hydrogels. Polym. Plast. Technol. Eng. 2017, 56, 667–677. https://doi.org/10.1080/03602559.2016.1211694
[6] Liu, T.; Zhang, Y.; Sun, M.; Jin, M.; Xia, W.; Yang, H.; Wang, T. Effect of Freezing Process on the Microstructure of Gelatin Methacryloyl Hydrogels. Front. Bioeng. Biotechnol. 2021, 9. https://doi.org/10.3389/fbioe.2021.810155
[7] Omer, A. M.; Sadik, W. A.-A.; El-Demerdash, A.-G. M.; Hassan, H. S. Formulation of PH-Sensitive Aminated Chitosan– Gelatin Crosslinked Hydrogel for Oral Drug Delivery. J. Saudi Chem. Soc. 2021, 25, 101384. https://doi.org/10.1016/j.jscs.2021.101384
[8] Alipal, J.; Mohd Pu’ad, N. A. S.; Lee, T. C.; Nayan, N. H.; Sahari, N.; Basri, H.; Idris, M. I.; Abdullah, H. Z. A Review of Gelatin: Properties, Sources, Process, Applications, and Commercialisation. Mater. Today Proc. 2021, 42, 240–250. https://doi.org/10.1016/j.matpr.2020.12.922
[9] Mohanto, S.; Narayana, S.; Merai, K. P.; Kumar, J. A.; Bhunia, A.; Hani, U.; Al Fatease, A.; Gowda, B. H. J.; Nag, S.; Ahmed, M. G., et al. Advancements in Gelatin-Based Hydrogel Systems for Biomedical Applications: A State-of-the-Art Review. Int. J. Biol. Macromol. 2023, 253, 127143. https://doi.org/10.1016/j.ijbiomac.2023.127143
[10] Mushtaq, F.; Raza, Z.A.; Batool, S. R.; Zahid, M.; Onder, O. C.; Rafique, A.; Nazeer, M. A. Preparation, Properties, and Applications of Gelatin-Based Hydrogels (GHs) in the Environmental, Technological, and Biomedical Sectors. Int. J. Biol. Macromol. 2022, 218, 601–633. https://doi.org/10.1016/j.ijbiomac.2022.07.168
[11] Skopinska-Wisniewska, J.; Tuszynska, M.; Olewnik- Kruszkowska, E. Comparative Study of Gelatin Hydrogels Modified by Various Cross-Linking Agents. Materials (Basel) 2021, 14, 396. https://doi.org/10.3390/ma14020396
[12] Yang, Z.; Hemar, Y.; Hilliou, L.; Gilbert, E. P.; McGillivray, D.J.; Williams, M. A. K.; Chaieb, S. Nonlinear Behavior of Gelatin Networks Reveals a Hierarchical Structure. Biomacromolecules 2016, 17, 590–600. https://doi.org/10.1021/acs.biomac.5b01538
[13] Maikovych, O.; Nosova, N.; Bukartyk, N.; Fihurka, N.; Ostapiv, D.; Samaryk, V.; Pasetto, P.; Varvarenko, S. Gelatin-Based Hydrogel with Antiseptic Properties: Synthesis and Properties. Appl. Nanosci. 2023, 13, 7611–7623. https://doi.org/10.1007/s13204-023-02956-6
[14] Ali, S.; Ranjha, N. M.; Ahmad, B.; Khan, A. A.; Hassan, F. U.; Aziz, T.; Alharbi, M.; Alshammari, A.; Alasmari, A. F.; Alharbi, M. E. Sustained Release of Drug Facilitated Through Chemically Crosslinked Polyvinyl Alcohol-Gelatin (PVA-GE) Hydrogels. A Sustainable Biomedical Approach. Polish J. Chem. Technol. 2023, 25, 56–65. https://doi.org/10.2478/pjct-2023-0017
[15] Moshayedi, S.; Sarpoolaky, H.; Khavandi, A. Fabrication, Swelling Behavior, and Water Absorption Kinetics of Genipin ‐ crosslinked Gelatin–Chitosan Hydrogels. Polym. Eng. Sci. 2021, 61,3094–3103. https://doi.org/10.1002/pen.25821
[16] Dron, I.; Nosovа, N.; Fihurka, N.; Bukartyk, N.; Nadashkevych, Z.; Varvarenko, S.; Samaryk, V. Investigation of Hydrogel Sheets Based on Highly Esterified Pectin. Chem. Chem. Technol. 2022, 16, 220–226. https://doi.org/10.23939/chcht16.02.220
[17] Heidarian, P.; Kouzani, A. Z. A Self-Healing Nanocomposite Double Network Bacterial Nanocellulose/Gelatin Hydrogel for Three Dimensional Printing. Carbohydr. Polym. 2023, 313, 120879. https://doi.org/10.1016/j.carbpol.2023.120879
[18] Kundakci, S.; Öǧüt, H. G.; Üzüm, Ö. B.; Karadaǧ, E. Swelling Characterization and Adsorptive Features of Acrylamide/Itaconic Acid Hydrogels and Semi-IPNs for Uranyl Ions. Polym.-Plast. Technol. Mater. 2012, 51, 1550–1561. https://doi.org/10.1080/03602559.2012.716132
[19] Uspenskaya, M. V.; Sitnikova, V. E.; Dovbeta, M. A.; Olekhnovich, R. O.; Denisyuk, I. Y. Sorption Properties of Clay and Pectin-Containing Hydrogels. Recent Res. Polym. 2018. https://doi.org/10.5772/intechopen.71190
[20] Katime, I.; Mendizábal, E. Swelling Properties of New Hydrogels Based on the Dimethyl Amino Ethyl Acrylate Methyl Chloride Quaternary Salt with Acrylic Acid and 2-Methylene Butane-1,4-Dioic Acid Monomers in Aqueous Solutions. Mater. Sci. Appl. 2010, 01, 162–167.https://doi.org/10.4236/msa.2010.13026
[21] Sharma, S.; Dua, A.; Malik, A. Biocompatible Stimuli Responsive Superabsorbent Polymer for Controlled Release of GHK-Cu Peptide for Wound Dressing Application. J. Polym. Res. 2017, 24, 1–8. https://doi.org/10.1007/s10965-017-1254-z
[22] Fosca, M.; Rau, J. V.; Uskoković, V. Factors Influencing the Drug Release from Calcium Phosphate Cements. Bioact. Mater. 2022, 7, 341–363. https://doi.org/10.1016/j.bioactmat.2021.05.032
[23] Bukhari, S. M. H.; Khan, S.; Rehanullah, M.; Ranjha, N. M. Synthesis and Characterization of Chemically Cross-Linked Acrylic Acid/Gelatin Hydrogels: Effect of PH and Composition on Swelling and Drug Release. Int. J. Polym. Sci. 2015, 2015, 1–15. https://doi.org/10.1155/2015/187961
[24] Xing, Q.; Yates, K.; Vogt, C.; Qian, Z.; Frost, M.C.; Zhao, F. Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal. Sci. Rep. 2014, 4, 4706. https://doi.org/10.1038/srep04706
[25] Peppas, N. A.; Merrill, E. W. Poly (Vinyl Alcohol) Hydrogels: Reinforcement of Radiation-crosslinked Networks by Crystallization. J. Polym. Sci. Polym. Chem. Ed. 1976, 14, 441–457. https://doi.org/10.1002/pol.1976.170140215
[26] Hoti, G.; Caldera, F.; Cecone, C.; Rubin Pedrazzo, A.; Anceschi, A.; Appleton, S. L.; Khazaei Monfared, Y.; Trotta, F. Effect of the Cross-Linking Density on the Swelling and Rheological Behavior of Ester-Bridged β-Cyclodextrin Nanosponges. Materials (Basel) 2021, 14, 478. https://doi.org/10.3390/ma14030478