Розроблено метод багатокритеріального синтезу нелінійних багатомасових електромеханічних слідкуючих систем з параметричною невизначеністю на основі комбінованого робастного стохастичного анізотропійного управління для підвищення точності таких систем. Метод заснований на виборі вектора мети робастного управління шляхом вирішення відповідної задачі багатокритеріального нелінійного програмування, в якій компонентами вектора цільової функції є прямі показники якості такі, як час першого узгодження, час регулювання, перерегулювання перехідних процесів, дисперсія помилки слідкування або стабілізації при відпрацюванні випадкових задаючих, або компенсації випадкових збурюючих впливів і т.д. Причому, ці вимоги пред'являються при роботі системи в різних режимах і в умовах зміни параметрів, а можливо і структури її об'єкта управління. Обчислення компонент вектора цільової функції і обмежень носить алгоритмічний характер і пов'язане з синтезом анізотропних регуляторів і моделюванням синтезованої нелінійної системи для різних режимів роботи системи, при різних вхідних сигналах і для різних значень параметрів об'єкта управління. Компонентами вектора невідомих параметрів є шукані вагові матриці, за допомогою яких формується вектор мети робастного управління. Синтез анізотропійних регуляторів зводиться до вирішення системи чотирьох пов'язаних рівнянь Риккати для мінімізації анізотропійной норми вектора мети стохастичного робастного управління. Рішення завдання багатокритеріального нелінійного програмування засноване на алгоритмах оптимізації роєм часток. Наводяться результати теоретичних і експериментальних досліджень нелінійної робастної двох масової електромеханічної слідкуючої системи з синтезованими анізотропійнимі регуляторами. Показано, що застосування синтезованих анізотропійних регуляторів двох масової електромеханічної слідкуючої системи дозволяє зменшити помилку компенсації випадкового зовнішнього збурення в 1,5-2 рази, зменшити час регулювання в 5 разів та знизити чутливість системи до зміни параметрів об'єкта управління у порівнянні із існуючою системою з типовими регуляторами.
- MGJW. Howse More Electric Technologies for the 21st Century, Institute of Electrical Engineers Power electronics, Machines and Drives, 16-18 April 2002.
- LF. Faleiro, “Power Optimised Aircraft – The Future of Aircraft Systems”, AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Years, Dayton, Ohio. Paper number AIAA 2003-PP10127, 4-17 July 2003.
- SJ. Cutts, “A collaborative Approach to the More Electric Aircraft”, Institute of Electrical Engineers Power electronics, Machines and Drives, pp. 223-228, 16-18 April 2002.
- Raimondi, et al., “Aircraft Embedded Generation Systems”, Institute of Electrical Engineers Power electronics, Machines and Drives, 16-18 April 2002.
- JS. Cloyd, “Status of the United States Air Force’s More Electric Aircraft Initiative”, IEEE AES Systems Magazine, pp. 17-22, April 1998.
- “Power Optimised Aircraft, contract G4RD-CT-2001-00601 under the European Communities 5th Framework Programme for Research. Periodic Reporting for period 1 - EMA4FLIGHT (Development of Electromechanical Actuators and Electronic control Units for Flight Control Systems). JTI-CS2-2016-CFP03-SYS-02-14 - Development of electromechanical actuators and electronic control units for flight control systems. EMA4FLIGHT. Project ID: 738042. Funded under: H2020-EU.3.4.5.6. – ITD Systems”, https://cordis.europa.eu/result/rcn/233254_en.htm
- “All Electric Combat Vehicles (AECV) for Future Applications / Report of The Research and Technology Organisation (RTO) of NATO Applied Vehicle Technology Panel (AVT) Task Group AVT-047 (WG-015)”, 234 р., 2004.
- “M1 Abrams Main Battle Tank 1982-1992. New Vanguard 2”, Osprey Publishing (UC), 49 p., 1993.
- “Challenger 2 Main Battle Tank 1987-2006. New Vanguard 112”, Osprey Publishing (UC), 49 p., 2006.
- Marsh Gelbart, “Merkava – A History of Israel’s Main Battle Tank”, Germany: Tankograd Publishing-Vertag Jochen Vollert, 175 p., 2005.
- “Gun turret drives: Electric stabilization systems for military ground vehicles”, https://www.jenoptik.com/products/defense-and-security/stabilization-sys...
- A.D. Eliseev, “Main directions of development of modern tank armament stabilizers”, Proceedings of the TSU. Technical sciences, vol.2, Issue 11, pp. 3-9, 2012.
- “Stabilizer of new generation tank armament”, Army and Navy Review, no.4, pp.41-42, 2014.
- O.V. Shamarih, “Electromechanical stablizers of tank armaments”, Bulletin of armored vehicles, no.1, pp. 23-26, 1985.
- V.V. Kozyrev, “Ways and prospects for improving the stabilizers of tank-water weapons”, Defense equipment, No. 2-3, pp. 65-71, 2005.
- V.L. Chernyshev, A.A. Tarasenko, and S.V.Ragulin, “Comparative evaluation of tactical and technical and structural parameters of T-64B tanks (BM “Bulat”) and Leopard-2A4” http://btvt.narod.ru/raznoe/bulat-leo2.htm
- V.V. Koshelev, B.P. Lavrishchev, V.Ya. Sokolov, E.K. Potemkin, and V.N. Prutkov, “Accuracy of complexes of tank-army armament according to military test data”, Bulletin of armored vehicles, no. 4, pp. 58-24, 1985.
- “Features of the upgraded tanks T-64BV of Ukraine Armed Forces”, https://diana-mihailova.livejournal.com/2524539.html
- “Stabilization Systems in Modern Tanks”, Military Technology, Special Issue No 3, pp. 78–79, 2001.
- W. Binroth, “Closed-loop optimization program for the M60A1 tank gun stabilization system”, Rock Island Arsenal. February 1975.
- Е.Е. Aleksandrov, I.N. Bogaenko, and B.I. Kuznetsov. “Parametric synthesis of tank weapon stabilization systems”, К.: Теchika, 1997.
- S. Peresada, S. Kovbasa, S. Korol, and N. Zhelinskyi, “Feedback linearizing field-oriented control of induction generator: theory and experiments”, Tekhnichna elektrodynamika, № 2, pp. 48-56, 2017.
- S. Buriakovskyi, An. Masliy, and Ar. Masliy, “Determining parameters of electric drive of a sleeper-type turnout based on electromagnet and linear inductor electric motor”, Eastern-European Journal of Enterprise Technologies, № 4/1(82), pp. 32-41, 2016.
- [24] M. McEneaney William, “Max-plus methods for nonlinear control and estimation”, Berlin: Birkhauser Boston Basel, 2006.
- [25] Wilson J. Rugh., “Nonlinear system theory the Volterra. Wiener Approach”, The Johns Hopkins University Press, 2002.
- [26] O. Tolochko, “Analysis of Observed-Based Control Systems with Unmeasured Disturbance”, Proc. of 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), May 29–June 2, 2017, Ukraine:Kyiv, pp. 1006-1010, 2017.
- [27] Z. Ren, M.-T. Pham, and C.S. Koh, “Robust global optimization of electromagnetic devices with uncertain design parameters: comparison of the worst case optimization methods and multiobjective optimization approach using gradient index”, Magnetics, IEEE transactions, no. 49, pp. 851-859, 2013.
- [28] P. Diamond, I.G. Vladimirov, A.P. Kurdjukov, and A.V. Semyonov, “Anisotropy – based Performance Analysis of Linear Discrete Time Invariant Control Systems”, Int. J. Control, vol. 74, pр. 28-42, 2001.
- [29] V.Ya Galchenko, A.N. Yakimov, “A turmitobionic method for the solution of magnetic defectometry problems in structural-parametric optimization formulation”, Russian Journal of Nondestructive Testing, vol. 50, Issue 2, pp. 59-71, 2014.
- [30] V.Ya. Galchenko, A.N. Yakimov, and D.L. Ostapushchenko, “Pareto-optimal parametric synthesis of axisymmetric magnetic systems with allowance for nonlinear properties of the ferromagnet”, Technical Physics, vol. 57, Issue 7, pp. 893–899, 2012.
- [31] Y. Shoham and K. Leyton-Brown, “Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations”, Cambridge University Press, 2009.
- [32] Xin-She Yang, Cui Zhihua, Xiao Renbin, Amir Hossein Gandomi, and Mehmet Karamanoglu, “Swarm Intelligence and Bio-Inspired Computation: Theory and Applications”, Elsevier Inc., 2013.