Застосування безпілотних літальних апаратів у будівельній сфері

2024;
: с. 35 – 42
https://doi.org/10.23939/jeecs2024.01.035
Надіслано: Березень 27, 2023
Переглянуто: Травень 14, 2024
Прийнято: Травень 21, 2024

R. Baitsar, A. Telishevskyi. Application of unmanned aerial vehicles in construction industry. Energy Engineering and Control Systems, 2024, Vol. 10, No. 1, pp. 35 – 42. https://doi.org/10.23939/jeecs2024.01.035

1
Національний університет “Львівська політехніка”
2
Національний університет “Львівська політехніка”

Технологічні досягнення у сфері електроніки, такі як мініатюрні електромеханічні прилади і невеликі потужні електродвигуни, дозволили розробити невеликі і легкі пристрої – безпілотні літальні апарати. Останнім часом  цивільні безпілотні літальні  апарати  починають стрімко набирати популярність. Безсумнівно, у майбутньому використання БПЛА буде використовуватися для багатьох служб. Вже зараз зростає попит на такі сфери застосування безпілотних літальних апаратів, як сільське господарство, екстрені служби, енергетика, паливо, видобуток корисних копалин, будівництво, геодезія (картографія), транспортування тощо. Завдяки сучасним технологіям стало можливим випускати легкі й малопотужні, але точні сенсори, які можуть використовуватися  контролерами  з  високою обчислювальною потужністю і низьким споживанням енергії. Це дає можливість розробити складні системи управління, що можуть бути реалізовані на борту даного апарата. Сучасні квадрокоптери використовуються для проектування, спостереження, пошуку, будівельних перевірок і низки інших завдань.

  1. Tealgroup. Available online: https://www.tealgroup.com/index.php/pages/press-releases/60-teal-group-predicts-worldwide-civil-drone-production-will-almost-triple-over-the-next-decade (accessed on 14 March 2022).
  2. Choi, H.-W.; Kim, H.-J.; Kim, S.-K.; Na, W.S. An Overview of Drone Applications in the Construction Industry. Drones 2023, 7, 515. https://doi.org/10.3390/drones7080515
  3. Molina, A.A.; Huang, Y.; Jiang, Y. A Review of Unmanned Aerial Vehicle Applications in Construction Management: 2016–2021. Standards 2023, 3, 95-109. https://doi.org/10.3390/standards3020009
  4. Szóstak, M., Nowobilski, T., Mahamadu, A.-M. and Pérez, D.C. (2023), "Unmanned aerial vehicles in the construction industry - Towards a protocol for safe preparation and flight of drones", International Journal of Intelligent Unmanned Systems, Vol. 11 No. 2, pp. 296-316. https://doi.org/10.1108/IJIUS-05-2022-0063
  5. Application of drones in construction projects [Electronic resource]. – URL : http://sc-os.ru/technologies/681-ispolzovanie-dronov-v- stroitelnyh-proektah.html – in Ukrainian
  6. Drones. A revolution in construction technologies [Electronic resource]. – URL :  https://os1.ru/event/8596drony-revolyutsiya-v-tehnologiyah- stroitelstva – in Ukrainian
  7. Siebert, S.; Teizer, J. Mobile 3D mapping for surveying earthwork projects using Unmanned Aerial Vehicle (UAV) system. Autom. Constr. 2014, 41, 1–14. https://doi.org/10.1016/j.autcon.2014.01.004
  8. Goessens, S.; Muller, C.; Latteur, P. Feasibility study for drone-based masonry construction of real-scale structures. Autom. Constr. 2018, 94, 458–480. https://doi.org/10.1016/j.autcon.2018.06.015
  9. Hallermann, N.; Morgenthal, G. Unmanned aerial vehicles (UAV) for the assessment of existing structures. In Proceedings of the 36th IABSE Symposium, Kolkata, India, 24–27 September 2013. https://doi.org/10.2749/222137813808627172
  10. Rachmawati, T.S.N.; Kim, S. Unmanned Aerial Vehicles (UAV) Integration with Digital Technologies toward Construction 4.0: A Systematic Literature Review. Sustainability 2022, 14, 5708. https://doi.org/10.3390/su14095708
  11. Dallasega, P.; Rauch, E.; Linder, C. Industry 4.0 as an enabler of proximity for construction supply chains: A systematic literature review. Comput. Ind. 2018, 99, 205–225. https://doi.org/10.1016/j.compind.2018.03.039
  12. Unmanned Aircraft Systems Roadmap 2005–2030 USA Office of the Secretary of Defense // www.acq.osd.mil/usd/ roadmaplast.pdf , 2006 – 213 p.
  13. Kwon, S.; Park, J.-W.; Moon, D.; Jung, S.; Park, H. Smart Merging Method for Hybrid Point Cloud Data using UAV and LIDAR in Earthwork Construction. Procedia Eng. 2017, 196, 21–28. https://doi.org/10.1016/j.proeng.2017.07.168
  14. Jiang, W.; Zhou, Y.; Ding, L.; Zhou, C.; Ning, X. UAV-based 3D reconstruction for hoist site mapping and layout planning in petrochemical construction. Autom. Constr. 2020, 113. https://doi.org/10.1016/j.autcon.2020.103137
  15. Asadi, K.; Suresh, A.K.; Ender, A.; Gotad, S.; Maniyar, S.; Anand, S.; Noghabaei, M.; Han, K.; Lobaton, E.; Wu, T. An integrated UGV-UAV system for construction site data collection. Autom. Constr. 2020, 112. https://doi.org/10.1016/j.autcon.2019.103068
  16. Gheisari, M.; Rashidi, A.; Esmaeili, B. Using Unmanned Aerial Systems for Automated Fall Hazard Monitoring. In Construction Research Congress 2018; American Society of Civil Engineers: New Orleans, LA, USA, 2018; pp. 62–72. https://doi.org/10.1061/9780784481288.007
  17. Vacanas, Y.; Themistocleous, K.; Agapiou, A.; Hadjimitsis, D. Building information modelling (BIM) and unmanned aerial vehicle (UAV) technologies in infrastructure construction project management and delay and disruption analysis. In Proceedings of the Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), Paphos, Cyprus, 22 June 2015. https://doi.org/10.1117/12.2192723
  18. Kerle, N.; Nex, F.; Gerke, M.; Duarte, D.; Vetrivel, A. UAV-based structural damage mapping: A review. Int. J. Geo-Inf. 2020, 9, 14  https://doi.org/10.3390/ijgi9010014
  19. Melo, R.R.S.; Costa, D.B.; Álvares, J.S.; Irizarry, J. Applicability of unmanned aerial system (UAS) for safety inspection on construction sites. Saf. Sci. 2017, 98, 174–185. https://doi.org/10.1016/j.ssci.2017.06.008
  20. Albeaino, G.; Gheisari, M. Trends, benefits, and barriers of unmanned aerial systems in the construction industry: A survey study in the United States. J. Inf. Technol. Constr. 2021, 26, 84–111. https://doi.org/10.36680/j.itcon.2021.006
  21. Varbla, S.; Ellmann, A.; Puust, R. Centimetre-range deformations of built environment revealed by drone-based photogrammetry. Autom. Constr. 2021, 128. https://doi.org/10.1016/j.autcon.2021.103787
  22. Tian, J.; Luo, S.; Wang, X.; Hu, J.; Yin, J. Crane lifting optimization and construction monitoring in steel bridge construction project based on BIM and UAV. Adv. Civil. Eng. 2021, 2021, https://doi.org/10.1155/2021/5512229
  23. Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. https://doi.org/10.1007/s12518-013-0120-x
  24. Bang, S.; Kim, H. Context-based information generation for managing UAV-acquired data using image captioning. Autom. Constr. 2020, 112, https://doi.org/10.1016/j.autcon.2020.103116
  25. Martínez-Carricondo, P.; Carvajal-Ramírez, F.; Yero-Paneque, L.; Agüera-Vega, F. Combination of HBIM and UAV photogrammetry for modelling and documentation of forgotten heritage. Case study: Isabel II dan in Níjar (Almería, Spain). Herit. Sci. 2021, 9, 95. https://doi.org/10.1186/s40494-021-00571-8
  26. Irizarry, J.; Karan, E.P.; Jalaei, F. Integrating BIM and GIS to improve the visual monitoring of construction supply chin management. Autom. Constr. 2013, 31, 241–254. https://doi.org/10.1016/j.autcon.2012.12.005
  27. Pepe, M.; Constantino, D.; Alfio, V.S.; Restuccia, A.G.; Papalino, N.M. Scan to BIM for the digital management and representation in 3D GIS environment of cultural heritage site. J. Cult. Herit. 2021, 50, 115–125. https://doi.org/10.1016/j.culher.2021.05.006
  28. Khan, M.S.; Park, J.; Seo, J. Geotechnical property modeling and construction safety zoning based on GIS and BIM integration. Appl. Sci. 2021, 11, 4004.  https://doi.org/10.3390/app11094004
  29. Wen, M.-C.; Kang, S.-C. Augmented Reality and Unmanned Aerial Vehicle Assist in Construction Management. In Computing in Civil and Building Engineering; American Society of Civil Engineers: Orlando, FL, USA, 2014; pp. 1570–1577. https://doi.org/10.1061/9780784413616.195
  30. Tomita, H.; Takabatake, T.; Sakamoto, S.; Arisumi, H.; Kato, S.; Ohgusu, Y. Development of UAV Indoor Flight Technology for Building Equipment Works. In Proceedings of the International Symposium on Automation and Robotics in Construction, Taipei, Taiwan, 28 June–1 July 2017; pp. 452–457. https://doi.org/10.22260/ISARC2017/0062
  31. Patel, T.; Suthar, V.; Bhatt, N. Application of Remotely Piloted Unmanned Aerial Vehicle in Construction Management. In Recent Trends in Civil Engineering; Pathak, K.K., Bandara, J.M.S.J., Agrawal, R., Eds.; Lecture Notes in Civil Engineering; Springer: Singapore, 2021; Volume 77, pp. 319–329. https://doi.org/10.1007/978-981-15-5195-6_25
  32. Hugenholtz, C.; Brown, O.; Walker, J.; Barchyn, T.; Nesbit, P.; Kucharczyk, M.; Myshak, S. Spatial Accuracy of UAV-Derived Orthoimagery and Topography: Comparing Photogrammetric Models Processed with Direct Geo-Referencing and Ground Control Points. Geomatica 2016, 70, 21–30. https://doi.org/10.5623/cig2016-102
  33. Zhou, S.; Gheisari, M. Unmanned aerial system applications in construction: A systematic review. Constr. Innov. 2018, 18, 453–468. https://doi.org/10.1108/CI-02-2018-0010
  34. Hamledari, H.; Davari, S.; Azar, E.R.; McCabe, B.; Flager, F.; Fischer, M. UAV-Enabled Site-to-BIM Automation: Aerial Robotic- and Computer Vision-Based Development of As-Built/As-Is BIMs and Quality Control. In Construction Research Congress 2018; American Society of Civil Engineers: New Orleans, LA, USA, 2018; pp. 336–346. https://doi.org/10.1061/9780784481264.033
  35. Kim, S.; Irizarry, J.; Kanfer, R. Multilevel Goal Model for Decision-Making in UAS Visual Inspections in Construction and Infrastructure Projects. J. Manag. Eng. 2020, 36. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000803
  36. Leite, F.; Cho, Y.; Behzadan, A.H.; Lee, S.; Choe, S.; Fang, Y.; Akhavian, R.; Hwang, S. Visualization, Information Modeling, and Simulation: Grand Challenges in the Construction Industry. J. Comput. Civ. Eng.2016, 30. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000604
  37. Nesbit, P.R.; Hugenholtz, C.H. Enhancing UAV–SfM 3D Model Accuracy in High-Relief Landscapes by Incorporating Oblique Images. Remote Sens. 2019, 11, 239. https://doi.org/10.3390/rs11030239
  38. Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement: Topographic Structure from Motion. Earth Surf. Process. Landforms 2012, 38, 421–430. https://doi.org/10.1002/esp.3366
  39. Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement 2017, 98, 221–227. https://doi.org/10.1016/j.measurement.2016.12.002
  40. Niethammer, U.; James, M.R.; Rothmund, S.; Travelletti, J.; Joswig, M. UAV-based remote sensing of the Super-Sauze landslide: Evaluation. Eng. Geol. 2012, 128, 2–11. https://doi.org/10.1016/j.enggeo.2011.03.012
  41. Smith, M.W.; Carrivick, J.L.; Quincey, D.J. Structure from motion photogrammetry in physical geography. Prog. Phys. Geogr. 2015, 40, 247–275. https://doi.org/10.1177/0309133315615805
  42. Nieminski, N.M.; Graham, S.A. Modeling Stratigraphic Architecture Using Small Unmanned Aerial Vehicles and Photogrammetry: Examples From the Miocene East Coast Basin, New Zealand. J. Sediment. Res. 2017, 87, 126–132. https://doi.org/10.2110/jsr.2017.5
  43. Wolf, P.R.; Dewitt, B.A.; Wilkinson, B.E. Elements of Photogrammetry with Application in GIS, 4th ed.; McGraw-Hill Education: Maidenhead, UK, 2014. ISBN-13: 978-0071761123
  44. Martin, R.; Rojas, I.; Franke, K.W.; Hedengren, J.D. Evolutionary View Planning for Optimized UAV Terrain Modeling in a Simulated Environment. Remote Sens. 2016, 8, 26. https://doi.org/10.3390/rs8010026
  45. Pavlis, T.L.; Mason, K.A. The New World of 3D Geologic Mapping. GSA Today 2017, 4–10. https://doi.org/10.1130/GSATG313A.1
  46. Vacca, G.; Dessì, A.; Sacco, A. The Use of Nadir and Oblique UAV Images for Building Knowledge. ISPRS Int. J. Geo-Inf. 2017, 6, 393. https://doi.org/10.3390/ijgi6120393
  47. Ostrowski, W. Accuracy of measurements in oblique aerial images for urban environment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 42, 79–85. https://doi.org/10.5194/isprs-archives-XLII-2-W2-79-2016
  48. Rosenberg, A.S.; Waller, P.M. An Evaluation of a UAV Guidance System with Consumer Grade GPS Receivers; Proquest, Umi Dissertation Publishing: Ann Arbor, MI, USA, 2009; p. 175.
  49. Forlani, G.; Dall’Asta, E.; Diotri, F.; di Cella, U.M.; Roncella, R.; Santise, M. Quality assessment of DSMs produced from UAV flights georeferenced with on-board RTK positioning. Remote Sens. 2018, 10, 311. https://doi.org/10.3390/rs10020311
  50. Moe, K.; Toschi, I.; Poli, D.; Lago, F.; Schreiner, C.; Legat, K.; Remondino, F. Changing the production pipeline – use of oblique aerial cameras for mapping purposes. Off. Publ. EuroSDR 2017, 2017, 44–61. https://doi.org/10.5194/isprs-archives-XLI-B4-631-2016