Мета. Встановлення зв’язку між термодинамічними умовами утворення вуглеводневих сумішей з зонами аккумуляції вуглеводневих відкладів. Методика. Для розрахунку рівноважних глибин ми використовували виключно хімічний склад газів родовищ вуглеводнів, перерахованих на елементи. В дослідженнях підземних вод, вільних і водорозчинених газів використовувались методи хімічного, кількісного спектрального і атомно-абсорбційного аналізів, а також газова хроматографія. Результати. Одержані результати вказують на існування суттєвої відмінності в глибинах термодинамічної рівноваги для родовищ в еоценових, майкопських і неогенових відкладах з одного боку та нижньопалеоценових, крейдових – з іншого. Перші характеризуються значеннями рівноважних глибин в межах від 30 до 50 км, в той час як інші характеризуються аналогічними параметрами в межах від 120 дор 150 км. Аналіз геологічних, гідрогеологічних і геохімічних умов Причорноморського водонапірного басейна (ПВНБ) свідчить, що джерела газопарових систем, з яких утворились поклади газу в верхньокрейдових, палеоценових та майкопських відкладах, знаходились у високотемпературній (біля 300 °С) зоні глибоких западин басейна. Ми вважаємо, що нижньопалеоценові поклади первинно сформувались внаслідок швидкоплинної субвертикальної міграції гомогенної газопарової суміші з високотемпературних джерел генерації. Шляхами можливої міграції були тектонічні порушення і зони підвищеної тріщинуватості порід. Поклади в майкопських і міоценових відкладах відображають подальший шлях вертикальної міграції газу і його акумуляції в пастках. Гідрогеологічні, гідро і газогеохімічні дослідження і термодинамічні розрахунки дали змогу обгрунтувати модель формування газових родовищ ПВНБ. Наукова новизна. Гідрогеологічні дослідження і термодинамічні розрахунки, проведені нами, узгоджуються з уявленнями про високотемпературну генезу вуглеводнів. Ми вважаємо, що відмінності в рівноважних глибинах між родовищами різних відкладів пов’язані з особливостями процесів їх заповнення флюїдом. Максимум локалізації покладів в інтервалах глибин 1900–3000 м свідчить не про утворення вуглеводнів в цьому діапазоні глибин, а про найбільш сприятливі геолого-гідрогеологічні умови формування і збереження покладів. Міграція і консервація вуглеводнів потребує різних геолого-фізичних і гідрогеологічних обстановок: міграції сприяє динамічність водонапірних систем, активний тектогенез, високі температури, невисока мінералізація вод; акумуляції (консервації) вуглеводнів сприяє квазізастійна обстановка, помірні температури, наявність резервуарів, перекритих надійними покришками. Зона нафтогазонагромадження пов’язана з елізійними, а наскрізної міграції – з термодинамічними водонапірними системами. Практична значущість. Результати дозволяють прогнозувати склад вуглеводневої складової родовищ, виходячи з їх місцеположення, а саме – близькості до зон розущільнення порід (підвищеної тріщинуватості) та глибини залягання. Ми вважаємо , що з глибиною кількість тяжких алканів буде збільшуватись. Газоконденсатні родовища на глибинах понад 1900 м мають глибинне походження. Гідрогеологічні та термодинамічні критерії газонафтоносності Причорноморського ВНБ можуть застосовуватись для інших нафтогазоносних регіонів України.
- 1. Atlas of oil and gas fields of Ukraine, vol. VI, Southern oil-and-gas-bearing region. Lviv, Tsentr Yevropy, 1998, 222 p.
2. Cortsenshtein V. N. Rastvorjonnye gazy podzemnoj gidrosfery Zemli [Water-dissolved gases of the under¬ground hydrosphere of the Earth]. M., Nedra, 1984, 220 p.
3. Cortsenshtein V. N. Vodonapornye sistemy krupnejshyh gazovyh i gazokondensatnyh mestoroz-denij SSSR [Water drive systems of the greatest gas and gas-condensate fields of the USSR]. M., Nedra, 1977, 248 p.
4. Chekaliuk E. B. Termodinamicheskie osnovy teorii mineral'nogo proishozdenija nefti [Thermodynamic basement of the mineral genesis theory of forming oil]. Kyiv, Naukova dumka, 1971, 265 p.
5. Huizenga J. M. Thermodynamic modeling of C-O-H fluids // Lithos, 2001, vol. 55. pp. 101–114.
https://doi.org/10.1016/S0024-4937(00)00040-2
6. Karpov I. K. Fizikohimicheskoe modelirovanie na EVM v geohimiji [Computed physicochemical modelling in geochemical]. Novosibirsk, Nauka, 1981, 247 p.
7. Khokha Yu. V. Termodynamica glybynnych vuglevodniv u prognozuvanni regional'noji naftoga-zonosnosti [Thermodynamics of abyssal hydrocarbons in forecast of regional oil and gas bearingness]. Kyiv, Naukova dumka, 2014, 56 p.
8. Khokha Yu., Lyubchak O. Aktyvnist' vody v termodynamichnyh umovynah Zemnoji kory ta verhnjoji mantii [Water activity in thermodynamic conditions of the Earth crust upper mantle]. Geologija i Geokhimija goryuchyh kopalyn, 2005, no. 3–4, pp. 104–109.
9. Kolodiy V. V., Kolodiy I. V. Model' formuvannja gazovyh pokladiv v akvatoriji Pivnichnoprychor-nomors'kogo vodonapirnogo basejnu [The model of forming gas fields of the Northern Black Sea aquiferous basin]. Geologija i Geokhimija goryuchyh kopalyn, 2002, no. 4, p. 11–20.
10. Kolodiy I. V. Rol' procesiv migraciji u for¬muvanni gazogeohimichnoji zonal'nosti v akvatoriji Pivnichnoprychornomors'kogo vodonapir¬nogo ba-sejnu [The role of migration to forming gas-geochemical zoning of the Northern Black Sea aquiferous basin]. Suchasni problemy geologichnoji nauky . Sb. nauk. pr. –K., 2003, pp. 29–30.
11. Kolodiy V. V., Kolodiy I. V. Gidrogeologicheskie dokazatel'stva uslovij genezisa, migracii i formirovanija zalezej uglevodorodov [Hydrogeolo-gical evidences of genesis, migration and forming hydrocarbon fields]. Neftegazovaja gidrogeologija na sovremennom etape. Sb. nauch. tr. –Moskva, GEOS, 2007, pp. 36–46.
12. Kolodiy I. V. Prognozuvannja lokalizaciji vuglevodnevyh skupchen' Prychornomors'kogo vodo¬napirnogo ,basejnu za gidrogeohimichnymy pokaz¬nykamy [Expected localization of hydrocarbon depozits of the Black Sea aquiferous basin based on hydrogeochemical indications]. Visnyk HNU imeni V. N. Karazina. – K.,2014, no 1128, pp. 32–36.
13. Lyubchak O., Khokha Yu. Termodinamicheskie uslovija formirovanija alkanov (C1–C20) v Zemnoj kore i Verhnej Mantii [Thermodynamic conditions of forming alkanes (C1-C20) of the Earth crust and Upper Mantle] Tezisy konferentsii "Degazacija Zemli. Geodinamica, geofliuidy, neft', gaz i ih paragenezisy" [Proc. of the conf. "Degassing of the Earth. Geo¬dynamic, geofluids, oil, gas and their paragenesises"]. Moskva, GEOS, 2008, pp. 300–303.
14. Ryuichi Sugisaki, Koichi Mimura. Mantle hydrocarbons: Abiotic or biotic? // Geochimica et Cosmochimica Acta, 1994, vol. 58, pp. 2527–2542.
https://doi.org/10.1016/0016-7037(94)90029-9
15. Sollogub V. B., Sologub N. V. Tectonika Odes'ko-Dzankojs'koji ryftovoji zony [Tectonics of Odesa-Dzhankoy rift zone] Dop. AN USSR. Ser B. Geoo-gichni, himichni ta bioogichni nauky, 1982, no.10. pp. 22–24.
16. Zubkov V. S., Stepanov A. N., Karpov I. K., Bychinskii V. A. Termodinamicheskaja model' sistemy C-H v uslovijah vysokih temperatur i davlenij [Thermo¬dynamic model of C-H system in high temperature and pressure conditions]. Geochi-mija,1998, no. 1, pp. 95–101.
17. C. Zhang, Z. Duan (2009), A model for C-O-H fluid in the Earth's mantle // Geochimica et Cosmochimica Acta, 2009, vol. 73, pp. 2089–2102.
https://doi.org/10.1016/j.gca.2009.01.021