The Extended Algebra of Algorithms With Multiconditional Elimination
The existing, intuitive computation models, that is the virtual machines of Turing, Post, Kolmogorov, Schönhage, Aho-Ullman-Hopcroft as well as the algorithms of Markov and Krinitski, and the recursive functions, all lack precise, mathematical formulation. Consequently, an algebra of algorithms is defined using the axiomatic method. The algebra is based on the operations of sequencing, elimination, paralleling and reversing as well as cyclic sequencing, cyclic elimination and cyclic paralleling, all of them performed on the so-called uniterms.