METHODS FOR DETERMINATION OF DEFORMATIONS WITH THE USE OF DIGITAL IMAGE CORRELATION TECHNOLOGIES

In order to obtain reliable information about the stress-strain state of the structure, subjected to loading, it is necessary to determine deformations` distribution. In some cases, it is almost impossible to assess stress-strain state with the traditional approaches. However, the DIC methods provide reliable information about the fields of displacement and deformation almost without limitations. Such approaches are rather effective for determination of the stress-strain state on smooth surfaces and in zones with stress concentrators. The DIC method is based on the comparison of the intensity of speckle pictures` distribution of optically rough surfaces. The combination of the intensities of correlation peaks with the corresponding calculation algorithms at the subpixel level makes it possible to obtain high measurement accuracy with simpler hardware compared to electronic interferometry technologies. The main purpose of this work is the detailed analysis of techniques and methods for determination of deformations with the use of digital image correlation. The article includes detailed review of existing studies of this topic and description of main principles for analytical computation of the optical data.

Blikharskyy Ya.Z. & Kopiika N.S. Digital image correlation method for analysis of reinforced concrete structures (2020). Bulletin of Odessa State Academy of Civil Engineering and Architecture, 2020, 78, 27-33 doi: 10.31650/2415-377X-2020-78-27-33.
https://doi.org/10.31650/2415-377X-2020-78-27-33
Bomarito, G. F., Hochhalter, J. D., Ruggles, T. J., & Cannon, A. H. (2017). Increasing accuracy and precision of digital image correlation through pattern optimization. Optics and Lasers in Engineering, 91, 73-85. doi: 10.1016/j.optlaseng.2016.11.005.
https://doi.org/10.1016/j.optlaseng.2016.11.005
Bomarito, G. F., Ruggles, T. J., Hochhalter, J. D., & Cannon, A. H. (2017). Investigation of optimal digital image correlation patterns for deformation measurement. In International Digital Imaging Correlation Society (pp. 217-218). Springer, Cham. doi: 10.1007/978-3-319-51439-0_51.
https://doi.org/10.1007/978-3-319-51439-0_51
Bracewell, R. N., & Bracewell, R. N. (1986). The Fourier transform and its applications (Vol. 31999, pp. 267-272). New York: McGraw-Hill.
Buljac, A., Jailin, C., Mendoza, A., Neggers, J., Taillandier-Thomas, T., Bouterf, A., & Roux, S. (2020). Digital volume correlation: progress and challenges. In Advancements in Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 3 (pp. 113-115). Springer, Cham. doi: 10.1007/978-3-030-30009-8_17
https://doi.org/10.1007/978-3-030-30009-8_17
Cannon, A. H., Hochhalter, J. D., Bomarito, G. F., & Ruggles, T. (2017). Micro speckle stamping: High contrast, no basecoat, repeatable, well-adhered. In International Digital Imaging Correlation Society (pp. 141-143). Springer, Cham. doi: 10.1007/978-3-319-51439-0_34.
https://doi.org/10.1007/978-3-319-51439-0_34
Carter, J. L., Uchic, M. D., & Mills, M. J. (2015). Impact of speckle pattern parameters on DIC strain resolution calculated from in-situ SEM experiments. In Fracture, Fatigue, Failure, and Damage Evolution, Volume 5 (pp. 119-126). Springer, Cham. doi: 10.1007/978-3-319-06977-7_16
https://doi.org/10.1007/978-3-319-06977-7_16
Chen D.J. Chiang F.P. Computer speckle interferometry// Proc. Of Intern. Confer. On Hologram interferometry and Speckle Metrology.- Baltimore: Society for Experimental Mechanics, 1990.- P.49-58.
Chen, D. J., & Chiang, F. P. (1993). Computer-aided speckle interferometry using spectral amplitude fringes. Applied Optics, 32(2), 225-236. doi: 10.1364/AO.32.000225.
https://doi.org/10.1364/AO.32.000225
Chen, D. J., Chiang, F. P., Tan, Y. S., & Don, H. S. (1993). Digital speckle-displacement measurement using a complex spectrum method. Applied optics, 32(11), 1839-1849. doi: doi.org/10.1364/AO.32.001839.
https://doi.org/10.1364/AO.32.001839
Chen, Z., Quan, C., Zhu, F., & He, X. (2015). A method to transfer speckle patterns for digital image correlation. Measurement science and technology, 26(9), 095201. doi: 10.1088/0957-0233/26/9/095201.
https://doi.org/10.1088/0957-0233/26/9/095201
Chen, Z., Xu, X., Wu, J., & He, X. (2017). Optimization of speckle pattern for digital image correlation. In International Digital Imaging Correlation Society (pp. 29-31). Springer, Cham. doi: 10.1007/978-3-319-51439-0_7.
https://doi.org/10.1007/978-3-319-51439-0_7
Cintrón, R., & Saouma, V. (2008). Strain measurements with the digital image correlation system Vic-2D. System, 106, 2D.
Denys, K., Coppieters, S., & Debruyne, D. (2017). Identification of a 3D Anisotropic Yield Surface Using a Multi-DIC Setup. In International Digital Imaging Correlation Society (pp. 101-104). Springer, Cham.. doi: 10.1007/978-3-319-51439-0_24.
https://doi.org/10.1007/978-3-319-51439-0_24
Greivenkamp, J. E. (1992). Phase shifting interferometers. Optical shop testing, 501-598.
Jones, E. M. C., Carroll, J. D., Karlson, K. N., Kramer, S. L. B., Lehoucq, R. B., Reu, P. L., & Turner, D. Z. (2017). Combining Full-Field Measurements and Inverse Techniques for Smart Material Testing. In International Digital Imaging Correlation Society (pp. 37-39). Springer, Cham. doi: 10.1007/978-3-319-51439-0_9
https://doi.org/10.1007/978-3-319-51439-0_9
Jones, R., Wykes, C., & Wykes, J. (1989). Holographic and speckle interferometry (No. 6). Cambridge university press.
https://doi.org/10.1017/CBO9780511622465
Kramer, S., Reu, P., & Bonk, S. (2017). A speckle patterning study for laboratory-scale DIC experiments. In International Digital Imaging Correlation Society (pp. 33-35). Springer, Cham. doi: 10.1007/978-3-319-51439-0_8.
https://doi.org/10.1007/978-3-319-51439-0_8
Kumar, B. V., & Hassebrook, L. (1990). Performance measures for correlation filters. Applied optics, 29(20), 2997-3006.doi: 10.1364/AO.29.002997.
https://doi.org/10.1364/AO.29.002997
Lee, J., Kim, E. J., Gwon, S., Cho, S., & Sim, S. H. (2019). Uniaxial static stress estimation for concrete structures using digital image correlation. Sensors, 19(2), 319.doi: 10.3390/s19020319.
https://doi.org/10.3390/s19020319
Majumder, S., Gupta, S., & Dubey, S. (2020). Spectral imaging using compressive sensing-based single-pixel modality. Electronics Letters, 56(19), 1013-1016. doi: 10.1049/el.2020.0757
https://doi.org/10.1049/el.2020.0757
Mazzoleni, P., Zappa, E., Matta, F., & Sutton, M. A. (2015). Thermo-mechanical toner transfer for high-quality digital image correlation speckle patterns. Optics and Lasers in Engineering, 75, 72-80. doi: 10.1016/j.optlaseng.2015.06.009.
https://doi.org/10.1016/j.optlaseng.2015.06.009
Optical 3D Deformation Analysis. ARAMIS Manual (GOM Company) Retrieved from: http://www.henindo.co.id/home/ARAMIS_EN_RevB.pdf
Poozesh, P., Sarrafi, A., Niezrecki, C., Mao, Z., & Avitabile, P. (2017). Extracting high frequency operating shapes from 3D DIC measurements and phased-based motion magnified images. In International Digital Imaging Correlation Society (pp. 81-83). Springer, Cham. doi: 10.1007/978-3-319-51439-0_20.
https://doi.org/10.1007/978-3-319-51439-0_20
Rossi, M., Cortese, L., Genovese, K., Lattanzi, A., Nalli, F., & Pierron, F. (2018). Evaluation of volume deformation from surface DIC measurement. Experimental Mechanics, 58(7), 1181-1194. doi: 10.1007/s11340-018-0409-0.
https://doi.org/10.1007/s11340-018-0409-0
Saldaña, H.A., Márquez Aguilar, P.A. & Molina, O.A. (2015) Concrete Stress-Strain Characterization by Digital Image Correlation, Journal of Applied Mechanical Engineering, 4 (189), 6,1-5. doi: 10.4172/2168-9873.1000189.
https://doi.org/10.4172/2168-9873.1000189
Schreier, H. W., Braasch, J. R., & Sutton, M. A. (2000). Systematic errors in digital image correlation caused by intensity interpolation. Optical engineering, 39(11), 2915-2921. doi: 10.1117/1.1314593
https://doi.org/10.1117/1.1314593
Segouin, V., Domenjoud, M., Bernard, Y., & Daniel, L. (2017). Development of a 2D DIC experimental tool for piezoelectric strains measurements. In International Digital Imaging Correlation Society (pp. 45-50). Springer, Cham. doi: 10.1007/978-3-319-51439-0_11.
https://doi.org/10.1007/978-3-319-51439-0_11
Sjodahl M. (2001) Digital speckle pattern interferometry and related techniques. Digital Speckle Photography/ Ed. By P.K. Rastogi.- Chichester; John Wiley and Sons, -P.289-336.
Sjödahl, M. (1994). Electronic speckle photography: increased accuracy by nonintegral pixel shifting. Applied Optics, 33(28), 6667-6673.doi: 10.1364/AO.33.006667.
https://doi.org/10.1364/AO.33.006667
Sjödahl, M. (1998). Some recent advances in electronic speckle photography. Optics and lasers in engineering, 29(2-3), 125-144.doi: 10.1016/S0143-8166(97)00081-X.
https://doi.org/10.1016/S0143-8166(97)00081-X
Sjödahl, M., & Benckert, L. R. (1993). Electronic speckle photography: analysis of an algorithm giving the displacement with subpixel accuracy. Applied Optics, 32(13), 2278-2284.doi: doi.org/10.1364/AO.32.002278.
https://doi.org/10.1364/AO.32.002278
Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F., & McNeill, S. R. (1983). Determination of displacements using an improved digital correlation method. Image and vision computing, 1(3), 133-139.doi: 10.1016/0262-8856(83)90064-1.
https://doi.org/10.1016/0262-8856(83)90064-1
VIC-2D. Refrence Manual. Correlated Solutions. Retrieved from: http://www.correlatedsolutions.com/installs/Vic-2D-2009-Manual.pdf.
Yamaguchi, I. (2003, May). Fundamentals and applications of speckle. In Speckle Metrology 2003 (Vol. 4933, pp. 1-8). International Society for Optics and Photonics. doi: 10.1117/12.516567.
https://doi.org/10.1117/12.516567
Yasmeen, F., Rajan, S., Sutton, M. A., & Schreier, H. W. (2017). Experimental study of measurement errors in 3D-DIC due to out-of-plane specimen rotation. In International Digital Imaging Correlation Society (pp. 211-215). Springer, Cham. doi: 10.1007/978-3-319-51439-0_50.
https://doi.org/10.1007/978-3-319-51439-0_50
Zappa, E., & Hasheminejad, N. (2017). Digital image correlation technique in dynamic applications on deformable targets. Experimental Techniques, 41(4), 377-387. doi: 10.1007/s40799-017-0184-3.
https://doi.org/10.1007/s40799-017-0184-3