ANALYSIS OF THE MOST COMMON DAMAGES IN REINFORCED CONCRETE STRUCTURES: A REVIEW

Reinforced concrete structures are often subjected to various negative environmental influences, reducing their reliability and durability. Main engineering tasks include extension of their life cycle, assessment of durability, reliability and residual service life. This requires reliable assessment of existing damages due to negative environmental impacts. Deterioration of RC structures is complex issue, which should be considered with the account of various factors. Damages and defects should be assessed, according to different criteria: degradation degree, type, time and cause of formation, etc. Article provides detailed analysis of the most common damages in RC structures on the basis of thorough literature review of this issue. Also, the classification of reasons for decrease of bearing capacity is proposed. Additionally, are discussed corrosion mechanisms and specifics of stress-strain state in corroded RC structures.

Akpanyung, K. V., & Loto, R. T. (2019). Pitting corrosion evaluation: a review. Journal of Physics: Conference Series. IOP Publishing, 1378 (2), 1-13. doi:  10.1088/1742-6596/1378/2/022088
https://doi.org/10.1088/1742-6596/1378/2/022088
Angst, U.M. (2018). Challenges and opportunities in corrosion of steel in concrete. Materials and Structures, 51 (4), 1-20. doi: 10.1617/s11527-017-1131-6.
https://doi.org/10.1617/s11527-017-1131-6
Ben Seghier, M.E.A., Ouaer, H., Ghriga, M.A., Menad, N.A., & Thai, D.K.(2021).Hybrid soft computational approaches for modeling the maximum ultimate bond strength between the corroded steel reinforcement and surrounding concrete. Neural Comput &Applic, 33, 6905-6920. doi:10.1007/s00521-020-05466-6.
https://doi.org/10.1007/s00521-020-05466-6
Bhagwat, Y., Nayak, G., Lakshmi, A., & Pandit, P. (2020). Corrosion of Reinforcing Bar in RCC Structures-A Review- Conference Paper. Civil Engineering Trends and Challenges for Sustainability (CTCS-2020). December 2020, 1-6. doi: 10.1007/978-981-16-2826-9_51
https://doi.org/10.1007/978-981-16-2826-9_51
Blikharskyy Ya.Z. & Kopiika N.S. (2019). Research of damaged reinforced concrete elements, main methods of their restoration and strengthening. Resource-saving materials, structures, buildings and structures, 37, 316-322. doi: 10.31713/budres.v0i37.300
https://doi.org/10.31713/budres.v0i37.300
Blikharskyy Ya.Z. & Kopiika N.S. (2021). Comparative analysis of approaches to assessing the reliability of building structures. Ukrainian Journal of Construction and Architecture, 3 (003), 46-54. doi: 10.30838/J.BPSACEA.2312.010721.46.766.
https://doi.org/10.30838/J.BPSACEA.2312.010721.46.766
Blikharskyy, Z., Selejdak, J., Blikharskyy, Y., & Khmil, R. (2019) Corrosion of reinforce bars in RC constructions. System Safety: Human-Technical Facility-Environment, 1(1), 277-283. doi:10.2478/czoto-2019-0036.
https://doi.org/10.2478/czoto-2019-0036
Bossio, A., Fabbrocino, F., Lignola, G. P., Monetta, T., Bellucci, F., Manfredi, G., & Prota, A. (2016). Effects of corrosion on reinforced concrete structures. In Proceedings of the 14th International Forum World Heritage and Degradation. June, 2016, Capri, Italy, 16-18. doi: 10.1016/j.prostr.2018.11.051
https://doi.org/10.1016/j.prostr.2018.11.051
Cao, J., Liu, L., & Zhao, Sh. (2020). Relationship between Corrosion of Reinforcement and Surface Cracking Width in Concrete. Advances in Civil Engineering, 2020 (7936861), 1-14. doi:10.1155/2020/7936861.
https://doi.org/10.1155/2020/7936861
Cardone, D. (2016). Fragility curves and loss functions for RC structural components with smooth rebars. Earthquakes and Structures, 10 (5), 1181-1212. doi: 10.12989/eas.2016.10.5.1181.
https://doi.org/10.12989/eas.2016.10.5.1181
Chandru, P., Karthikeyan, J., & Natarajan, C. (2021). Techniques to Assess the Corrosion Resistance and Corrosion Rate of the Steel Embedded in Concrete. Building Pathologies and Acoustic Performance. Springer, Cham, 33-54. doi: 10.1007/978-3-030-71233-4_3
https://doi.org/10.1007/978-3-030-71233-4_3
Chiu, C.K., Sung, H.F., Chi, K.N., & Hsiao, F.P. (2019). Experimental quantification on the residual seismic capacity of damaged RC column members. International Journal of Concrete Structures and Materials, 13(1), 1-22. doi:10.1186/s40069-019-0338-z.
https://doi.org/10.1186/s40069-019-0338-z
Ciubotariu, A.C., & Istrate, G.G. (2016). Corrosion rate of steels DX51D and S220GD in different corrosion environment. "Mircea cel Batran" Naval Academy Scientific Bulletin, 19 (1), 166-172. doi: 10.21279/1454-864X-16-I1-028.
https://doi.org/10.21279/1454-864X-16-I1-028
Dergach, T.O., Sukhomlin, G.D, Balev, A.E, & Sukhomlin, D.A (2020). Accelerated electrochemical methods for testing austenitic corrosion-resistant steels for strength against intergranular corrosion. Bulletin of the Dnieper State Academy of Civil Engineering and Architecture, 3, 46-56. doi: 10.30838/J.BPSACEA.2312.070720.46.640.
https://doi.org/10.30838/J.BPSACEA.2312.070720.46.640
Dixit, M., & Gupta, A.K. (2021). A Review of Different Assessment Methods of Corrosion of Steel Reinforcement in Concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1-18. doi: 10.1007/s40996-021-00644-5.
https://doi.org/10.1007/s40996-021-00644-5
Dizaj, E. A., Padgett, J. E., & Kashanic, M. M. (2021) A Markov Chain-Based Model for Structural Vulnerability Assessment of Corrosion-Damaged Reinforced Concrete Bridges. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 379 (2203), 1-28. doi: 10.1098/rsta.2020.0290.
https://doi.org/10.1098/rsta.2020.0290
Ebell, G., Burkert, A., & Mietz, J. (2018). Detection of reinforcement corrosion in reinforced concrete structures by potential mapping: Theory and practice. International Journal of Corrosion, 2018 (3027825), 1-7. doi: 10.1155/2018/3027825.
https://doi.org/10.1155/2018/3027825
Ferreira, R. M., & Jalali, S. (2006). Probability-based durability design of concrete structures in marine environment: doctoral thesis. Universidade do Minho, 339 p. URL: http://hdl.handle.net/1822/2675.
Gießgen, T., Mittelbach, A., Höche, D., Zheludkevich, M., & Kainer K. U. (2019). Enhanced predictive corrosion modeling with implicit corrosion products. Materials and Corrosion, 70(12), 2247-2255. doi: 10.1002/maco.201911101.
https://doi.org/10.1002/maco.201911101
Hait, P., Arjun, S., & Satyabrata, Ch. (2018) Quantification of damage to RC structures: A comprehensive review. Disaster Advances, 11(12), 41-59. URL: https://www.academia.edu/39813716/Quantification_of_damage_to_RC_Structu...
Hibner, D. R. (2017). Residual axial capacity of fire exposed reinforced concrete columns. (Thesis of dissertation of Master of Science in Civil Engineering). Michigan State University, 2017, 134 p. doi:10.25335/M5NS0W.
Javor, T. (1991). Damage classification of concrete structures. The state of the art report of RILEM Technical Committee 104-DCC activity. Materials and Structures, 24,  253-259. doi: 10.1007/BF02472079.
https://doi.org/10.1007/BF02472079
Kaveh, A., Scott, A., & Palermo, A. (2019). Experimental evaluation of the residual compression strength and ultimate strain of chloride corrosion‐induced damaged concrete. Structural Concrete, 20(1), 296-306. doi: 10.1002/suco.201800108.
https://doi.org/10.1002/suco.201800108
Kenny, A., & Katz, A. (2020). Steel-concrete interface influence on chloride threshold for corrosion-Empirical reinforcement to theory. Construction and Building Materials, 244 (118376). doi; 10.1016/j.conbuildmat.2020.118376.
https://doi.org/10.1016/j.conbuildmat.2020.118376
Koteš, P., Vavruš, M., & Moravčík, M. (2021, August). Diagnostics and Evaluation of Bridge Structures on Cogwheel Railway. In International Conference of the European Association on Quality Control of Bridges and Structures. Springer, Cham, 93-101. doi: 10.1007/978-3-030-91877-4_11
https://doi.org/10.1007/978-3-030-91877-4_11
 Lee, K. S. (2015) An experimental study on hybrid noncompression CF bracing and GF sheet wrapping reinforcement method to restore damaged RC structures. Shock and Vibration, 2015, 202751, 1-13. doi: 10.1155/2015/202751
https://doi.org/10.1155/2015/202751
Li, D., Wei, R., Li, L., Guan, X., & Mi, X. (2019). Pitting corrosion of reinforcing steel bars in chloride contaminated concrete. Construction and Building Materials, 199, 359-368. doi: 10.1016/j.conbuildmat.2018.12.003.
https://doi.org/10.1016/j.conbuildmat.2018.12.003
Linwen, Y., François, R., Dang, V. H., L'Hostis, V., & Gagné, R. (2015). Distribution of corrosion and pitting factor of steel in corroded RC beams. Construction and Building Materials, 95 (1), 384-392. doi: 10.1016/j.conbuildmat.2015.07.119.
https://doi.org/10.1016/j.conbuildmat.2015.07.119
Lobodanov, M.M., Vegera, P.I., & Blikharskyy, Z. Ya. (2018). Analysis of the influence of the main types of defects and damages on the bearing capacity of reinforced concrete elements. Bulletin of the National University of Lviv Polytechnic. Theory and practice of construction., 888, 93-100. URL: http://nbuv.gov.ua/UJRN/VNULPTPB_2018_888_15.
Mahmoodian, M. (2021). Structural reliability assessment of corroded offshore pipelines. Australian Journal of Civil Engineering, 19(2), 123-133. doi: 10.1080/14488353.2020.1816639
https://doi.org/10.1080/14488353.2020.1816639
Mak, M. W. T., Desnerck, P., & Lees, J. (2018). Correlation between surface crack width and steel corrosion in reinforced concrete. International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018). MATEC Web Conf. 2018, 199, 1-8. doi: 10.1051/matecconf/201819904009
https://doi.org/10.1051/matecconf/201819904009
Menz, N., Gerasimidis, S., Civjan, S., Czach, J., & Rigney, J. (2021). Review of Post-Fire Inspection Procedures for Concrete Tunnels. Transportation Research Record, 2675.9, 1304-1315. doi:10.1177/03611981211006732.
https://doi.org/10.1177/03611981211006732
Morshed, A. Z., Shakib, S., & Jahin, T. (2020) Characterization of Impressed Current Technique to Model Corrosion of Reinforcement in Concrete. Journal of Engineering Science, 11(1),93-99. doi:10.3329/jes.v11i1.49551.
https://doi.org/10.3329/jes.v11i1.49551
Nguyen, T. H. Y., Bui, V. H. L., Tran, V. M., Cao, N. T., Pansuk, W., & Jongvivatsakul, P. (2021). Verifying the Reliability of Impressed Current Method to Simulate Natural Corrosion in Reinforced Concrete. Engineering Journal, 25(3), 105-116. doi:10.4186/ej.2021.25.3.105.
https://doi.org/10.4186/ej.2021.25.3.105
Ouzaa, K., & Chahmi, O. (2019). Numerical model for prediction of corrosion of steel reinforcements in reinforced concrete structures. Underground Space, 4(1), 72-77. doi:10.1016/j.undsp.2018.06.002.
https://doi.org/10.1016/j.undsp.2018.06.002
Ponechal, R., Koteš, P., Michálková, D., Kraľovanec, J., & Bahleda, F. (2021). Effect of Water Condensate on Corrosion of Wires in Ungrouted Ducts. Materials, 14(24), 7765. doi :10.3390/ma14247765
https://doi.org/10.3390/ma14247765
Royani, A., Prifiharni, S., Priyotomo, G., & Sundjono, S. (2021). Corrosion rate and corrosion behaviour analysis of carbon steel pipe at constant condensed fluid. Metallurgical and Materials Engineering, 27(4), 519-530. doi: 10.30544/591.
https://doi.org/10.30544/591
Sadeghi, K., & Nouban, F. (2016). Damage and fatigue quantification of RC structures. Structural Engineering and Mechanics, 58 (6), 1021-1044. doi: 10.12989/SEM.2016.58.6.1021.
https://doi.org/10.12989/sem.2016.58.6.1021
Santos J., &Henriques A.A. (2021). Rotation capacity of corroded RC beams with special ductility tempcore rebars. Engineering Structures, 236 (1), 112138. doi: 10.1016/j.engstruct.2021.112138.
https://doi.org/10.1016/j.engstruct.2021.112138
Santos, J., & Henriques, A.A. (2015). Strength and ductility of damaged tempcore rebars. Procedia Engineering, 114, 800-807. doi: 10.1016/j.proeng.2015.08.029.
https://doi.org/10.1016/j.proeng.2015.08.029
Santos, J. & Henriques, A.A. (2012). Ductility of damaged reinforced concrete beams. Conference: ICDS12 - Durable Structures: from construction to rehabilitation. At: Lisbon, Portugal. 2012, 1-17. URL: http://durati.lnec.pt/pdf/icds12_r.pdf.
https://doi.org/10.5402/2012/816107
Shakib, S., & Morshed, A.Z. (2021). Modeling of Cover Concrete Cracking Due to Uniform Corrosion of Reinforcement. Journal of Engineering Science. 12(1), 43-49. doi:10.3329/jes.v12i1.53100.
https://doi.org/10.3329/jes.v12i1.53100
Xia, J., Wei-liang, J., & Li, L. (2011). Shear performance of reinforced concrete beams with corroded stirrups in chloride environment. Corrosion Science, 53(5), 1794-1805. doi: 10.1016/j.corsci.2011.01.058.
https://doi.org/10.1016/j.corsci.2011.01.058
Yatsko, F.V. (2015). Modeling and forecasting of durability of reinforced concrete elements of transport constructions on highways: dis. for science. degree of Dr. Tech. Science. 05.23.17. Kyiv, 237 p. URL: http://diser.ntu.edu.ua/Yazko_aref.pdf
Zacchei, E., & Nogueira, C.G. (2021) 2D/3D Numerical Analyses of Corrosion Initiation in RC Structures Accounting Fluctuations of Chloride Ions by External Actions. KSCE J Civ Eng., 25, 2105-2120. doi: 10.1007/s12205-021-1242-z.
https://doi.org/10.1007/s12205-021-1242-z
Zhang, L., Niu, D., Wen, B., & Luo D. (2019). Concrete protective layer cracking caused by non-uniform corrosion of reinforcements. Materials, 12 (24), 4245. doi: 10.3390/ma12244245.
https://doi.org/10.3390/ma12244245
Zhu, W., & François, R. (2013). Effect of corrosion pattern on the ductility of tensile reinforcement extracted from a 26-year-old corroded beam. Advances in concrete construction, 1(2), 121-136. doi:10.12989/acc2013.01.2.121.
https://doi.org/10.12989/acc2013.01.2.121