Асоціація аніонів 5,5′-дибромо-о-крезолсульфонфталеїну з катіонами барвників у водному розчині

2022;
: cc. 387 - 397
Автори:
1
V. N. Karazin Kharkiv National University

Розглянуто утворення у водному розчині асоціатів між одно- або двозарядними аніонами 5,5′ дибромо-о-крезолсульфонфталеїну й однозарядними катіонами ціанінових барвників (квінальдиновий синій, квінальдиновий червоний). На підставі спектрофотометричних даних проаналізовані значення рівноважних констант асоціації. Напівемпіричним квантовохімічним методом АМ1 визначена енергетика катіон-аніонних взаємодій (стандартна ентальпія утворення іонів та асоціатів) і встановлена ймовірна будова асоціатів. Обговорена узгодженість між експериментальними спектрофотометричними та розрахунковими квантовохімічними даними.

[1] Bishop, E. Observations on the Theory of Action of Visual Indicators. Analyst 1971, 96, 537-549. https://doi.org/10.1039/AN9719600537
[2] Yamamoto, K.; Adachi, K. Interaction between Sulfonephthalein Dyes and Chitosan in Aqueous Solution and Its Application to the Determination of Surfactants. Anal. Sci. 2003, 19, 1133. https://doi.org/10.2116/analsci.19.1133
[3] Shapovalov, S. Association Processes with the Participation of Dyes in Solutions: Thermodynamic and Equilibrium Characteristics of Nanosystems; LAP LAMBERT Academic Publishing: Riga, 2020.
[4] Balderas-Hernández, P.; Ramírez-Silva, M.T.; Romero-Romo, M.; Palomar-Pardavé, M.; Roa-Morales, G.; Barrera-Díaz, C.; Rojas-Hernández, A. Experimental Correlation between the pKa Value of Sulfonphthaleins with the Nature of the Substituents Groups. Spectrochim. Acta - A: Mol. Biomol. Spectrosc. 2008, 69, 1235-1245. https://doi.org/10.1016/j.saa.2007.06.038
[5] Ma, J.; Shu, H.; Yang, B.; Byrne, R.H.; Yuan, D. Spectrophotometric Determination of pH and Carbonate Ion Concentrations in Seawater: Choices, Constraints and Consequences. Anal. Chim. Acta 2019, 1081, 18-31. https://doi.org/10.1016/j.aca.2019.06.024
[6] Hudson-Heck, E.; Liu, X.; Byrne, R.H. Purification and Physical-Chemical Characterization of Bromocresol Purple for Carbon System Measurements in Freshwaters, Estuaries, and Oceans. ACS Omega 2021, 6, 17941-17951. https://doi.org/10.1021/acsomega.1c01579
[7] Takeshita, Y.; Warren, J.K.; Liu, X.; Spaulding, R.S.; Byrne, R.H.; Carter, B.R.; De Grandpre, M.D.; Murata, A.; Watanabe, S.-I. Consistency and Stability of Purified Meta-Cresol Purple for Spectrophotometric pH Measurements in Seawater. Mar. Chem. 2021, 236, 104018. https://doi.org/10.1016/j.marchem.2021.104018
[8] Bargrizan, S.; Smernik, R.J.; Mosley, L.M. Development of a Spectrophotometric Method for Determining pH of Soil Extracts and Comparison with Glass Electrode Measurements. Soil Sci. Soc. Am. J. 2017, 81, 1350-1358. https://doi.org/10.2136/sssaj2017.04.0119
[9] Bargrizan, S.; Smernik, R.J.; Fitzpatrick, R.W.; Mosley, L.M. The Application of a Spectrophotometric Method to Determine pH in Acidic (pH<5) Soils. Talanta 2018, 186, 421-426. https://doi.org/10.1016/j.talanta.2018.04.074
[10] Bargrizan, S.; Smernik, R.J.; Mosley, L.M. Spectrophotometric Measurement of the pH of Soil Extracts Using a Multiple Indicator Dye Mixture. Eur. J. Soil Sci. 2019, 70, 411-420. https://doi.org/10.1111/ejss.12745
[11] Jang, J.-S.; Kwon, S.-H. Micro pH Sensor Using Patterned Hydrogel with pH Indicator. J. Sensor Sci. Technol. 2011, 20, 234-237. https://doi.org/10.5369/JSST.2011.20.4.234
[12] El Nahhal, I.M.; Zourab, S.M.; Kodeh, F.S.; Qudaih, A.I. Thin Film Optical BTB pH Sensors Using Sol-Gel Method in Presence of Surfactants. Int. Nano Lett. 2012, 2, 16. https://doi.org/10.1186/2228-5326-2-16
[12] Tashyrev, O.B.; Sioma, I.B.; Tashyreva, G.O., Hovorukha, V.M. Bromothymol Blue as the Universal Indicator for Determining the Stereometric Allocation of pH and Eh in the Medium in Heterophase Microorganisms Cultivation. Mikrobiolohichnyi Zhurnal 2019, 81, 14. https://doi.org/10.15407/microbiolj81.02.014 (in Ukrainian)
[13] Pinto, V.C.; Araújo, C.F.; Sousa, P.J.; Gonçalves, L.M.; Minas, G. A Low-Cost Lab-on-a-Chip Device for Marine pH Quantification by Colorimetry. Sens. Actuators B Chem. 2019, 290, 285-292. https://doi.org/10.1016/j.snb.2019.03.098
[14] El-Nahhal, I.M.; Zourab, S.M.; Kodeh, F.S.; Abd el-Salam, F.H.; Baker, S.A. Sol-Gel Entrapment of Bromothymol Blue (BTB) Indicator in the Presence of Cationic 16E1Q and 16E1QS Surfactants. J. Sol-Gel Sci. Technol. 2016, 79, 628-636. https://doi.org/10.1007/s10971-016-4044-x
[15] Kuswandi, B. Nanobiosensor Approaches for Pollutant Monitoring. Environ. Chem. Lett. 2019, 17, 975-990. https://doi.org/10.1007/s10311-018-00853-x
[16] Mohamed, S.H.; Issa, Y.M.; Salim, A.I. Simultaneous Quantification of Simeprevir Sodium: A Hepatitis C Protease Inhibitor in Binary and Ternary Mixtures with Sofosbuvir and/or Ledipasvir Utilizing Direct and H-point Standard Addition Strategies. Spectrochim. Acta - A: Mol. Biomol. Spectrosc. 2019, 210, 290-297. https://doi.org/10.1016/j.saa.2018.07.017
[17] Nguyen, T.D.; Le, H.B.; Dong, T.O.; Pham, T.D. Determination of Fluoroquinolones in Pharmaceutical Formulations by Extractive Spectrophotometric Methods Using Ion-Pair Complex Formation with Bromothymol Blue. J Anal. Methods Chem. 2018, 2018, ID 8436948. https://doi.org/10.1155/2018/8436948
[18] Issa, Y.M.; Abdel-Kader, N.S.; Zahran, A.E. Spectrophotometric Determination of Benzalkonium Chloride Using Sulfonphthaleins. Int. J. Pharm. Sci. Rev. Res. 2021, 68, 50-59. http://dx.doi.org/10.47583/ijpsrr.2021.v68i01.009
[19] El-Ansary, A.L.; Abdel-Kader, N.S.; Asran, A.M. Spectrophotometric Studies on the Reaction of Diaveridine with Some Sulfonphthalein Dyes Based on Ion-Pair/Ion-Associate Complexes Formation. J. Spectrosc (Hindawi) 2018, 2018, ID 9269148. https://doi.org/10.1155/2018/9269148
[20] Antakli, S.; Nejem, L.; Ahmad, W.A. Determination of Flucloxacillin Sodium by Analytical Spectrophotometry. Res. J. Pharm. Technol. 2019, 12, 4757-4762. https://doi.org/10.5958/0974-360X.2019.00820.5
[21] Gouda, A.A.; Hamdi, A.Y.; El Sheikh, R.; Abd Ellateif, A.E.; Badahdah, N.A.; Alzuhiri, M.E.; Saeed, E. Development and Validation of Spectrophotometric Methods for Estimation of Antimigraine Drug Eletriptan Hydrobromide in Pure Form and Pharmaceutical Formulations. Ann. Pharm. Franç. 2021, 79, 395-408. https://doi.org/10.1016/j.pharma.2020.11.002
[22] Souri, E.; Amoon, E.; Ravari, N.S.; Keyghobadi, F.; Tehrani, M.B. Spectrophotometric Methods for Determination of Sunitinib in Pharmaceutical Dosage Forms Based on Ion-pair Complex Formation. Iran J. Pharm. Res. 2020, 19, 103-109. https://doi.org/10.22037/ijpr.2020.1101119
[23] Cardoso, S.G.; Ieggli, C.V.S.; Pomblum, S.C.G. Spectrophotometric Determination of Carvedilol in Pharmaceutical Formulations Through Charge-Transfer and Ion-Pair Complexation Reactions. Pharmazie 2007, 62, 34-37. https://pubmed.ncbi.nlm.nih.gov/17294810
[24] Mohamed, S.H.; Issa, Y.M.; Elfeky, S.A. Extraction-Free Spectrophotometric Assay of the Antitussive Drug Pentoxyverine Citrate Using Sulfonephthalein Dyes. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2019, 222, 117186. https://doi.org/10.1016/j.saa.2019.117186
[25] Mohamed, S.H.; Issa, Y.M.; Elfeky, S.A.; Ahmed, A.A.; Abdel-Kader, N.S. Spectroscopic, Thermogravimetric Studies and DFT Calculations of Pentoxyverine Citrate Ion-Pairs with Sulfonephthalein Dyes. J. Mol. Struct. 2020, 1212, 128074. https://doi.org/10.1016/j.molstruc.2020.128074
[26] Alizadeh, N.; Keyhanian, F. Sensitive and Selective Spectrophotometric Assay of Piroxicam in Pure Form, Capsule and Human Blood Serum Samples via Ion-Pair Complex Formation. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2014, 130, 238-244. https://doi.org/10.1016/j.saa.2014.03.074
[27] Kumar, A.; Singh, V.; Kumar, P. Spectrophotometric Estimation of Eflornithine Hydrochloride by Using Ion-Pair Reagents. Pak. J. Pharm. Sci. 2015, 28, 623-629. https://pubmed.ncbi.nlm.nih.gov/25730793
[28] Mabrouk, M.M.; Gouda, A.A.; El-Malla, S.F.; Abdel Haleem, D.S. Sensitive Spectrophotometric Determination of Vardenafil HCl in Pure and Dosage Forms Détermination Spectrophotométrique Sensible du Vardénafil HCl Sous Formes Pures et Posologiques. Ann. Pharm. Franç. 2021, 79, 16-27. https://doi.org/10.1016/j.pharma.2020.08.003
[29] Garg, B.; Bisht, T., Ling, Y.-C. Colorimetric Recognition of Hydrazine in Aqueous solution by a Bromophenol Blue-Tethered Ion-pair-like Ratiometric Probe. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2021, 251, 119456. https://doi.org/10.1016/j.saa.2021.119456
[30] van de Logt, A.-E.; Rijpma, S.R.; Vink, C.H.; Prudon-Rosmulder, E.; Wetzels, J.F.; van Berkel, M. The Bias between Different Albumin Assays May Affect Clinical Decision-Making. Kidney Int. 2019, 95, 1514-1517. https://doi.org/10.1016/j.kint.2019.01.042
[31] Zeybek, D.K.; Demir, B.; Zeybek, B.; Pekyardýmcý, Þ. A Sensitive Electrochemical DNA Biosensor for Antineoplastic Drug 5-Fluorouracil Based on Glassy Carbon Electrode Modified with Poly(Bromocresol Purple). Talanta 2015, 144, 793-800. https://doi.org/10.1016/j.talanta.2015.06.077
[32] Aljerf, L. High-Efficiency Extraction of Bromocresol Purple Dye and Heavy Metals as Chromium from Industrial Effluent by Adsorption onto a Modified Surface of Zeolite: Kinetics and equilibrium study. J. Environ. Manage 2018, 225, 120-132. https://doi.org/10.1016/j.jenvman.2018.07.048
[33] Kim,Y.H.; Sathiyanarayanan, G.; Kim, H.J.; Bhatia, S.K.; Seo, H.-M.; Kim, J.-H.; Song, H.-S.; Kim, Y.-G.; Park, K.; Yang, Y.-H. A Liquid-Based Colorimetric Assay of Lysine Decarboxylase and Its Application to Enzymatic Assay. J. Microbiol. Biotechnol. 2015, 25, 2110-2115. https://doi.org/10.4014/jmb.1505.05063
[34] Zeng, J.; Eckenrode, H.M.; Dai, H.-L.; Wilhelm, M.J. Adsorption and Transport of Charged vs. Neutral Hydrophobic Molecules at the Membrane of Murine Erythroleukemia (MEL) Cells. Colloids Surf. B: Biointerfaces 2015, 127, 122-129. https://doi.org/10.1016/j.colsurfb.2015.01.014
[35] Thompson, S.; Ding, L.-E. Underestimation of the Serum Ascites Albumin Gradient by the Bromocresol Purple Method of Albumin Measurement. Intern. Med. J. 2018, 48, 1412-1413. https://doi.org/10.1111/imj.14101
[36] Garcia Moreira, V.; Beridze Vaktangova, N.; Martinez Gago, M.D.; Laborda Gonzalez, B.; Garcia Alonso, S.; Fernandez Rodriguez, E. Overestimation of Albumin Measured by Bromocresol Green vs Bromocresol Purple Method: Influence of Acute-Phase Globulins. Lab. Med. 2018, 49, 355-361. https://doi.org/10.1093/labmed/lmy020
[37] Le Reun, E.; Leven, C.; Lapègue, M.; Kerspern, H.; Rouillé, A.; Labarre, M.; Carré, J.-L.; Padelli, M. Assessment of Immunoturbidimetric DiAgam Kit for Plasma Albumin Measurement: A Comparative Study. Ann. Biol. Clin. (Paris) 2018, 76, 477-479. https://doi.org/10.1684/abc.2018.1361d
[38] Delanghe, S.; Van Biesen, W.; Van de Velde, N.; Eloot, S.; Pletinck, A.; Schepers, E.; Glorieux, G.; Delanghe, J.R.; Speeckaert, M.M. Binding of Bromocresol Green and Bromocresol Purple to Albumin in Hemodialysis Patients. Clin. Chem. Lab. Med. 2018, 56, 436. https://doi.org/10.1515/cclm-2017-0444
[39] Pan, W.C.; Lau, W.; Mattman, A.; Kiaii, M.; Jung, B. Comparison of Hypoalbuminemia-Corrected Serum Calcium Using BCP Albumin Assay to Ionized Calcium and Impact on Prescribing in Hemodialysis Patients. Clin. Nephrol. 2018, 89, 34-40. https://doi.org/10.5414/CN109070
[40] Ueno, T.; Hirayama, S.; Sugihara, M.; Miida, T. The Bromocresol Green Assay, but not the Modified Bromocresol Purple Assay, Overestimates the Serum Albumin Concentration in Nephrotic Syndrome through Reaction with á2-Macroglobulin. Ann. Clin. Biochem. 2016, 53, 97. https://doi.org/10.1177/0004563215574350
[41] Yoshihiro, S.; Ishigaki, T.; Ookurano, H.; Yoshitomi, F.; Hotta, T.; Kang, D.; Hokazono, E.; Kayamori, Y. New Colorimetric Method with Bromocresol Purple for Estimating the Redox State of Human Serum Albumin. J. Clin. Biochem. Nutr. 2020, 67, 257-262. https://doi.org/10.3164/jcbn.20-10
[42] Chmelová, D.; Ondrejoviè, M. Purification and Characterization of Extracellular Laccase Produced by Ceriporiopsis Subvermispora and Decolorization of Triphenylmethane Dyes. J. Basic Microbiol. 2016, 56, 1173-1182. https://doi.org/10.1002/jobm.201600152
[43] Shapovalov, S.A.; Koval, V.L.; Chernaya, T.A.; Pereverzev, A.Yu.; Derevyanko, N.A.; Ishchenko, A.A.; Mchedlov-Petrossyan, N.O. Association of Indopolymethine Cyanine Cations with Anions of Sulfonephthalein and Xanthene Dyes in Water. J. Brazil. Chem. Soc. 2005, 16, 232. https://doi.org/10.1590/S0103-50532005000200017
[44] Shapovalov, S.; Kiseliova, Ya. Association of Thymolsulfonephthalein and Cresolsulfonephthalein Anions with Cationic Cyanines in Aqueous Solution. Chem. Chem. Technol. 2010, 4, 271-276. https://doi.org/10.23939/chcht04.04.271
[45] Shapovalov, S. Association of Quinaldine Red Cation in an Aqueous Solution: The Interaction with Anionic Dyes. AASCIT Journal of Nanoscience 2018, 3, 35-40.
[46] Shapovalov, S.; Kiseliova, Ya. Heteroassociation of the Bromine-Containing Anions of Sulfophthaleins in Aqueous Solution. Russ. Chem. Bull. 2010, 59, 1317-1326. https://doi.org/10.1007/s11172-010-0241-x
[47] Šapovalov, S.; Samojlov, E.; Yvanov, V. Chymyja i chym. technolohyja 2006, 49, 39-44.
[48] Shapovalov, S. Association of Anions of Phenolsulfonephthalein and its Alkyl-Substituted Derivatives with Single-Charged Cations of Polymethines. Russ. Chem. Bull. 2011, 60, 465. https://doi.org/10.1007/s11172-011-0073-3
[49] Gupta, D.; Read, J. First pKa Values of Some Acid-Base Indicators. J. Pharm. Sci. 1970, 11, 1683-1685. https://doi.org/10.1002/jps.2600591136
[50] Herz, A. Photogr. Sci. Eng. 1974, 18, 207-215. https://doi.org/10.1177/000494417401800214
[51] Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627-1639. https://doi.org/10.1021/ac60214a047
[52] Paris, Q. The Dual of the Least-Squares Method. Open J. Statist. 2015, 5, 658-664. https://doi.org/10.4236/ojs.2015.57067
[53] Shapovalov, S.; Samoilov, E. Regularities of Homo- and Heteroassociation of the Pinacyanol Cation in Aqueous Solution. Russ. Chem. Bull. 2008, 57, 1405-1415. https://doi.org/10.1007/s11172-008-0183-8
[54] Ishchenko, A.; Shapovalov, S. Heterogeneous Association of the Ions of Dyes in Solutions (Review). J. Appl. Spectrosc. 2004, 71, 605-629. https://doi.org/10.1023/B:JAPS.0000049618.42857.0a
[55] Šapovalov, S.; Svyščeva, Ja. Visnyk Charkiv. Nacionalʹn. in-tu. Chimija 2000, 477, 112. (in Ukrainian)
[56] Veselkov, D.; Evstyhneev, M.; Kodyncev, V. Žurn. fyzyč. chymyy 2001, 75, 879.
[57] Veselkov, D.; Syhaev, V.; Vysockyj, S. Žurn. strukt. chymyy 2000, 41, 86. https://doi.org/10.1007/BF02684731
[58] Šapovalov, S. Ukr. chymyč. žurn. 2004, 70, 25.
[59] Martins, T.D.; Pacheco, M.L.; Boto, R.E.; Almeida, P.; Farinha, J.P.S.; Reis, L.V. Synthesis, Characterization and Protein-Association of Dicyanomethylene Squaraine Dyes. Dyes Pigm. 2017, 147, 120-129. https://doi.org/10.1016/j.dyepig.2017.07.070
[60] Barbero, N.; Butnarasu, C.; Visentin, S.; Barolo, C. Squaraine Dyes: Interaction with Bovine Serum Albumin to Investigate Supramolecular Adducts with Aggregation-Induced Emission (AIE) Properties. Chem. Asian J. 2019, 14, 896-903. https://doi.org/10.1002/asia.201900055
[61] Hovor, I.V.; Fedyunyayeva, I.A.; Obukhova, O.M.; Kolosova, O.S.; Tatarets, A.L. Zastosuvannya Styrylovogo ta Skvarainovogo Barvnykiv dla Vyznachennya Konformatsiinykh Zmin u Molekulakh Proteiniv. Odesa National University Herald. Chemistry 2020, 25, 94. https://doi.org/10.18524/2304-0947.2020.3(75).212477 (in Ukrainian)
[62] Ilina, K.; MacCuaig, W.M.; Laramie, M.; Jeouty, J.N.; McNally, L.R.; Henary, M. Squaraine Dyes: Molecular Design for Different Applications and Remaining Challenges. Bioconjugate Chem. 2020, 31, 194-213. https://doi.org/10.1021/acs.bioconjchem.9b00482
[63] Kortekaas, L.; Browne, W.R. The Evolution of Spiropyran: Fundamentals and Progress of an Extraordinarily Versatile Photochrome. Chem. Soc. Rev. 2019, 48, 3406-3424. https://doi.org/10.1039/C9CS00203K - https://pubs.rsc.org/en/content/articlelanding/2019/cs/c9cs00203k
[64] Zhang, Y.; Ng, M.; Chan, M.H.-Y.; Wu, N.M.-W.; Wu, L.; Yam, V.W.-W. Synthesis and Characterization of Photochromic Triethylene Glycol-Containing Spiropyrans and their Assembly in Solution. Org. Chem. Front. 2021, 8, 3047-3058. https://doi.org/10.1039/D1QO00316J
[65] Zurita, A.; Duran, A.; Ribó, J.M.; El-Hachemi, Z.; Crusats, J. Hyperporphyrin Effects Extended into a J-Aggregate Supramolecular Structure in Water. RSC Adv. 2017, 7, 3353-3357. https://doi.org/10.1039/C6RA27441B
[66] Gaeta, M.; Sortino, G.; Randazzo, R.; Pisagatti, I.; Notti, A.; Fragalà, M.E.; Parisi, M.F.; D'Urso, A.; Purrello, R. Long-Range Chiral Induction by a Fully Noncovalent Approach in Supramolecular Porphyrin-Calixarene Assemblies. Chem. Eur. J. 2020, 26, 3515-3318. https://doi.org/10.1002/chem.202000126
[67] Pronkin, P.G.; Tatikolov, A.S. Formation of J-Aggregates of an Anionic Oxacarbocyanine Dye Upon Interaction with Proteins and Polyelectrolytes. J. Appl. Spectrosc. 2017, 84, 217-224. https://doi.org/10.1007/s10812-017-0454-y
[68] Bricks, J.L.; Slominskii, Y.L.; Panas, I.D.; Demchenko, A.P. Fluorescent J-Aggregates of Cyanine Dyes: Basic Research and Applications Review. Methods Appl. Fluoresc. 2017, 6, 012001. https://doi.org/10.1088/2050-6120/aa8d0d
[69] Nordhaus, M.A.; Krongauz, V.V.; Hai, T.T. Synthesis of Solvatochromic Merocyanine Dyes and their Immobilization to Polymers. J. Appl. Polym. Sci. 2017, 134, 44451. https://doi.org/10.1002/app.44451
[70] Pasch, P.; Papadopoulos, J.; Goralczyk, A.; Hofer, M.L.; Tabatabai, M.; Müller, T.J.J.; Hartmann, L. Highly Fluorescent Merocyanine and Cyanine PMMA Copolymers. Macromol. Rapid Comm. 2018, 39, 1800277. https://doi.org/10.1002/marc.201800277
[71] Dewar, M.J.S.; Storch, D.M. Development and Use of Quantum Molecular Models. 75. Comparative Tests of Theoretical Procedures for Studying Chemical Reactions. J. Am. Chem. Soc. 1985, 107, 3898-3902. https://doi.org/10.1021/ja00299a023
[72] Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods I. Method. J. Comput. Chem. 1989, 10, 209-220. https://doi.org/10.1002/jcc.540100208