The filtration method of gradual dehydration of Iron(II) sulfate heptahydrate hase been proposed. Based on the generalization of experimental data of hydrodynamics, the calculated dependence Euзовн=155∙Reзовн-0,55∙Hdч was obtained, which makes it possible to determine theoreticallypressure losses in the stationary layer of FeSO4·7H2O.According to the results of complex thermal analysis, the regularities of the gradual dehydration process of FeSO4·7H2O have been established in different temperature intervals. The temperature of 339K has been chosen, to implement the FeSO4∙7H2O dehydration process with the separation of the first three molecules of crystallization water, ensuring the preservation of the crystalline state of the product.The kinetics of moisture removal from FeSO4∙7H2Oat different heights of the material layer and velocities of heat agent movement have been investigated. Based on energy consumption calculations, the optimal parameters of the process were established: the height of the stationary layer Н = 60.10-3mand the fictitious velocities of the heat agent movement v0 =0,86 m/s.The filtration method of gradual dehydration of Iron(II) sulfate heptahydrate hase been proposed. Based on the generalization of experimental data of hydrodynamics, the calculated dependence Euзовн=155∙Reзовн-0,55∙Hdч was obtained, which makes it possible to determine theoreticallypressure losses in the stationary layer of FeSO4·7H2O.According to the results of complex thermal analysis, the regularities of the gradual dehydration process of FeSO4·7H2O have been established in different temperature intervals. The temperature of 339K has been chosen, to implement the FeSO4∙7H2O dehydration process with the separation of the first three molecules of crystallization water, ensuring the preservation of the crystalline state of the product.The kinetics of moisture removal from FeSO4∙7H2Oat different heights of the material layer and velocities of heat agent movement have been investigated. Based on energy consumption calculations, the optimal parameters of the process were established: the height of the stationary layer Н = 60.10-3mand the fictitious velocities of the heat agent movement v0 =0,86 m/s.
1. Barsukova, H.V., Savchenko-Pererva, M.Y. (2020). Reducing the technogenic load on the environment due to the technical solution for the disposal of iron sulphate.J. Chem. Technol., 28(2), 168-176.https://doi.org/10.15421/08202802
https://doi.org/10.15421/08202802
2. Gázquez, M.J., Bolívar, J.P., Garcia-Tenorio, R., Vaca, F. (2009). Physicochemical characterization of raw materials and by-products from the titanium dioxide industry. J. Hazard. Mater., 166, 1429-1440.
https://doi.org/10.1016/j.jhazmat.2008.12.067
3. Huang, P., Deng, S., Zhang, Z., Wang, X., Chen, X., Yang, X., Yang, L.(2015). A sustainable process to utilize ferrous sulfate waste from titanium oxide industry by reductive decomposition reaction with pyrite. Thermochim. Acta, 620, 18-27.https://doi.org/10.1016/j.tca.2015.10.004
https://doi.org/10.1016/j.tca.2015.10.004
4. Kruhlova, N. O., Bakhariev, V. S. (2015). Ekolohichno bezpechna tekhnolohiia pereroblennia shlamiv vyrobnytstva tytanooksydnykh pihmentiv. Ecological safety, 2(20), 69-76.
5. Georgiou, D., Aivazidis, A., Hatiras, J., Gimouhopoulos, K. (2003). Treatment of cotton textile wastewater using lime and ferrous sulfate. Water Research, 37(9), 2248-2250. https://doi.org/10.1016/S0043-1354(02)00481-5
https://doi.org/10.1016/S0043-1354(02)00481-5
6. Potgieter, H., Horne, K.A., Potgieter, S.S., Wirth, W. (2002). An evaluation of the incorporation of a titanium dioxide producer's waste material in Portland cement clinker. Mater. Lett., 57, 157-163. DOI: 10.1016/S0167-577X(02)00723-1
https://doi.org/10.1016/S0167-577X(02)00723-1
7. Kanari, N., Evrard, O., Neveux, N. (2001). Recycling ferrous sulfate via super-oxidant synthesis. The Journal of The Minerals, 53, 32-33. https://doi.org/10.1007/s11837-001-0191-8
https://doi.org/10.1007/s11837-001-0191-8
8. Sobol, Kh. S., Markiv, T. Ye., Sanytskyi, M. A., Kohuch, H. V. (2003). Vplyv aktyvnykh mineralnykh dodatkiv na vlastyvosti kompozytsiinykh tsementiv. Bulletin of the National University "Lviv Polytechnic". Series: Chemistry, Technology of Substances and their Application, 488, 274-278.
9. Kanari, N., Filippova, I., Diot, F., Mochón, J., Ruiz-Bustinza, I., Allain, E., Yvon, J. (2014). Utilization of a waste from titanium oxide industry for the synthesis of sodium ferrate by gas-solid reactions. Thermochim. Acta, 575, 219-225. https://doi.org/10.1016/j.tca.2013.11.008
https://doi.org/10.1016/j.tca.2013.11.008
10. Karpovich, Ye. A., Zarechennyi, V. G. (2001). Vovlechenie v proizvodstvo udobrenii kislogo zheleznogo kuporosa. Ekologiia i zdorove cheloveka. Okhrana vodnogo i vozdushnogo basseinov. Utilizatciia otkhodov, 2, 396-398.
11. Savchenko-Pererva, M. V., Barsukova, H, Y. (2020). Reducing the technogenic load on the environment due to the technical solution for the disposal of iron sulphate. Journal of Chemistry and Technologies, 28(2), 168-176. https://doi.org/10.15421/082018
https://doi.org/10.15421/082018
12. Yavorskyi, V. T., Kalymon, A. B., Rubai, O. I. (2015). A study of the effect of iron (III) compoundson oxidation of iron(II) ions by atmospheric oxygen. The Journal of The Minerals, 6(76), 13. https://doi.org/10.15587/1729-4061.2015.47460
https://doi.org/10.15587/1729-4061.2015.47460
13. Glouannec, P., Salagnac, P., Guézenoc, H., Allanic, N. (2008). Experimental study of infrared-convective drying of hydrous ferrous sulphate. Powder Technology, 187, 280-288. https://doi.org/10.1016/j.powtec.2008.03.007
https://doi.org/10.1016/j.powtec.2008.03.007
14. Yavorsʹkyy, V.T., Helesh, A.B., Kalymon, YA.A., Znak, Z.O. (2014). Ekolohichnyy monitorynh vyrobnytstva chervonoho ferumoksydnoho pihmentu. Énerhotekhnolohyy y resursosberezhenye, 3, 46-55.
15. Tong Wang, Kenneth, A. Debelak, John, A. Roth. (2007). Dehydration of iron(II) sulfate heptahydrate. Thermochimica Acta, 462(1-2), 89-93. https://doi.org/10.1016/j.tca.2007.07.001
https://doi.org/10.1016/j.tca.2007.07.001
16. Kindzera D., Hosovskyi R., Atamanyuk V., Symak D. Heat transfer process during filtration drying of grinded sunflower biomass. (2021). Chem. Chem. Technol., 15(1), 118-124. https://doi.org/10.23939/chcht15.01.118
https://doi.org/10.23939/chcht15.01.118
17. V.M. Atamanyuk, V.V. Kochubei, D.P. Kindzera, N.Y. Tsiura. (2022). Дослідження процесу дегідратації залізо(ІІ) сульфат гептагідрату фільтраційним методом.Питання хімії та хімічної технології, 5, 24-32.http://dx.doi.org/10.32434/0321-4095-2022-144-5-24-32
https://doi.org/10.32434/0321-4095-2022-144-5-24-32
18. Kochubei, V., Yaholnyk, S., Bets М., Malovanyy М. (2020). Use of activated clinoptilolite for direct dye-contained wastewater treatment. Chemistry & chemical technology, 14(3), 386 - 393.https://doi.org/10.23939/chcht14.03.386
https://doi.org/10.23939/chcht14.03.386