Mathematical modeling and statistical analysis of Moroccan mean annual rainfall using EXPAR processes

In this work, we propose a study of the mean annual rainfall time series in order to evaluate the climate changes pattern over time.  If the analysis of this time series is carried out correctly, it can contribute to improve planning and policy development.  That is why we consider the problem of mathematical modeling and analysis of the mean annual rainfall of Morocco between 1901 and 2020 using descriptive statistics, structure changes analysis, spectral analysis and a nonlinear Exponential Autoregressive (EXPAR) processes to reproduce the behavior of this time series.  The results indicate three main breakpoints and show that the time series has a remarkable cycles about 60, 18 and 6 years with a global decrease tendency about 0.56 mm per year.  Furthermore, we have justified the choice of using a non-linear EXPAR processes rather than a linear traditional one and provided a good fitted EXPAR model.

  1. Bernstein L., Bosch P., Canziani O., Christ R., Riahi K.  Climate change 2007 Synthesis report: An assessment of the intergovernmental panel on climate change.  IPCC (2008).
  2. Sebbar A., Hsaine M., Fougrach H., Badri W.  Carte des précipitations annuelles au Maroc (1935/2006).  Actes du XXVIe colloque de l’Association Internationale de Climatologie.  475–480 (2013).
  3. Sebbar A., Badri W., Fougrach H., Hsaine M., Saloui A.  Étude de la variabilité du régime pluviométrique au Maroc septentrional (1935–2004).  Science et Changements Planétaires/Sécheresse.  22 (3), 139–148 (2011).
  4. Driouech F.  Distribution des précipitations hivernales sur le Maroc dans le cadre d'un changement climatique: descente d'échelle et incertitudes.  Ph.D. thesis. INPT (2010).
  5. Delannoy H.  Introduction à l'étude des relations entre les températures des eaux océaniques et les précipitations côtières marocaines.  Norois.  116 (1), 535–545 (1982).
  6. Lamb P. J., Peppler R. A.  North Atlantic Oscillation: concept and an application.  Bulletin of the American Meteorological Society.  68 (10), 1218–1225 (1987).
  7. Bellichi A.  Les régimes pluviométriques du Maroc du Centre-ouest.  Méditerranée.  88 (1), 5–10 (1998).
  8. El hamly M., Sebbari R., Rachid L. P., Ward M. N., Portis D. H.  Towards the seasonal prediction of moroccan precipitation and its implications for water resources management.  Water Resources Variability in Africa During the XX Century: Proceeding of the Abidjan.  98, 79–87 (1998).
  9. Knippertz P., Ulbrich U. F., Marques F., Corte–Real J.  Decadal changes in the link between El Niño and springtime North Atlantic Oscillation and European–North African rainfall.  International Journal of Climatology: A Journal of the Royal Meteorological Society.  23 (11), 1293–1311 (2003).
  10. Bouaicha R., Benabdelfadel A.  Variabilité et gestion des eaux de surface au Maroc.  Sécheresse.  21 (4), 325–326 (2010).
  11. Driouech F., Déqué M., Sánchez–Gómez E.  Weather regimes-Moroccan precipitation link in a regional climate change simulation.  Global and Planetary Change.  72 (1–2), 1–10 (2010).
  12. Hanchane H., Bijou B.  Modélisation des précipitations annuelles au Maroc selon les données panel.  Les échelles spatiales et temporelles fines: Acte du XXXI Colloque de L’Association Internationale de Climatologie. 294–299 (2018).
  13. Azouagh N., El Melhaoui S.  Detecting exponential component in autoregressive models: comparative study between several tests of nonlinearity.  Communications in Statistics – Simulation and Computation.  50 (11), 3273–3285 (2021).
  14. Azouagh N., El Melhaoui S.  Detection of EXPAR nonlinearity in the Presence of a Nuisance Unidentified Under the Null Hypothesis.  Sankhya B.  83 (2), 397–429 (2021).
  15. Haggan H., Ozaki T.  Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model.  Biometrika.  68 (1), 189–196 (1981).
  16. Tong H.  Non-linear time series: a dynamical system approach.  Oxford University Press (1990).
  17. Ozaki T.  Non-Gaussian characteristics of exponential autoregressive processes.  In: Developments in time-series analysis.  Ed. T. Subba Rao. Chapman and Hall, London. 257–273 (1993).
  18. Jelloul A., El Melhaoui S.  Optimal detection of exponential component in autoregressive models.  Journal of Time Series Analysis.  27 (6), 793–810 (2006).
  19. Jelloul A., Azouagh N., El Melhaoui S.  Aligned signed-rank tests of a linear autoregressive model against an exponential autoregressive one.  Communications in Statistics – Theory and Methods. 1–22 (2022).
  20. Baragona R., Battaglia F., Cucina D.  A note on estimating autoregressive exponential models.  Quaderni di Statistica.  4 (1), 71–88 (2002).
  21. Bai J.  Least Squares Estimation of a Shift in Linear Processes.  Journal of Time Series Analysis.  15 (5), 453–472 (1994).
  22. Bai J.  Estimating Multiple Breaks One at a Time.  Econometric Theory.  13 (3), 315–352 (1997).
  23. Bai J.  Estimation of a change point in multiple regression models.  Review of Economics and Statistics.  79 (4), 551–563 (1997).
  24. Bai J., Perron P.  Estimating and Testing Linear Models With Multiple Structural Changes.  Econometrica.  66 (1), 47–78 (1998).
  25. Bai J., Perron P.  Computation and Analysis of Multiple Structural Change Models.  Journal of Applied Econometrics.  18 (1), 1–22 (1997).
  26. Andrews D. W. K.  Tests for parameter instability and structural change with unknown change point.  Econometrica.  61 (4), 821–856 (1993).
  27. Pollock D. S. G.  The methods of time-series analysis.  Interdisciplinary Science Reviews.  12 (2), 128–135 (1987).
  28. World Bank Group.  Annual mean morocco rainfull. https://tinyurl.com/y3jhywl8.
  29. Trading Economics.  Annual mean Moroccan rainfull 2016–2020.  https://urlz.fr/kqh7.