Machine learning and similar image-based techniques based on Nash game theory

The use of computer vision techniques to address the task of image retrieval is known as a Content-Based Image Retrieval (CBIR) system.  It is a system designed to locate and retrieve the appropriate digital image from a large database by utilizing a query image.  Over the last few years, machine learning algorithms have achieved impressive results in image retrieval tasks due to their ability to learn from large amounts of diverse data and improve their accuracy in image recognition and retrieval.  Our team has developed a CBIR system that is reinforced by two machine learning algorithms and employs multiple clustering and low-level image feature extraction, such as color, shape, and texture, to formulate a Nash game.  Consequently, we are faced with a multicriteria optimization problem.  To solve this problem, we have formulated a three-player static Nash game, where each player utilizes a different strategy (color descriptor, Zernike descriptor, and SFTA descriptor) based on their objective function.  The Nash equilibrium is defined as the membership classes of the query image.

 

  1. Corbière C., Ben-Younes H., Ramé A., Ollion A.  Leveraging weakly annotated data for fashion image retrieval and label prediction.  2017 IEEE International Conference on Computer Vision Workshops (ICCVW).  2268–2274 (2017).
  2. Salton G., Buckley C.  Term-weighting approaches in automatic text retrieval.  Information Processing & Management.  24 (5), 513–523 (1988).
  3. Gobeill J., Müller M., Ruch P.  Translation by Text Categorization: Medical Image Retrieval in ImageCLEFmed.  CLEF 2006: Evaluation of Multilingual and Multi-modal Information Retrieval. 706–710 (2007).
  4. Kour N., Gondhi N.  Content Based Image Retrieval Using Machine Learning Based Algorithm.  COMET 2019: Emerging Trends in Computing and Expert Technology.  1088–1096 (2020).
  5. Bibi R., Mehmood Z., Munshi A., Mehmood Yousaf R., Sohail Ahmed S.  Deep features optimization based on a transfer learning, genetic algorithm, and extreme learning machine for robust contentbased image retrieval.  PLoS ONE.  17 (10), e0274764 (2022).
  6. Kavitha P. K., Saraswathi V.  Machine Learning Paradigm towards Content Based Image Retrieval on High Resolution Satellite Images.  International Journal of Innovative Technology and Exploring Engineering (IJITEE).  9 (2S2), 999–1005 (2019).
  7. Guo Y., Zhang L., Hu Y., He X., Gao J.  MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition.  ECCV 2016: Computer Vision – ECCV 2016. 87–102 (2016).
  8. Destuynder P., Jaoua M., Sellami H.  A dual algorithme for denoising and preserving edges in image processing.  Journal of Inverse and Ill-posed Problems.  15 (2), 149–165 (2005).
  9. Bencharef O., Jarmouni B., Moussaid N., Souissi A.  Image retrieval using global descriptors and multiple clustering in Nash game.  Annals of the University of Craiova, Mathematics and Computer Science Series.  42 (1), 202–210 (2015).
  10. Elmoumen S., Moussaid N., Aboulaich R.  Image retrieval using Nash equilibrium and Kalai–Smorodinsky solution.  Mathematical Modeling and Computing.  8 (4), 646–657 (2021).
  11. Khotanzad A., Hong Y. H.  Invariant image recognition by Zernike moments.  IEEE Transactions on Pattern Analysis and Machine Intelligence.  12 (5), 489–497 (1990).
  12. Kim H. K., Kim J. D., Sim D. G., Oh D. I.  A modified Zernike moment shape descriptor invariant to translation, rotation and scale for similaritybased image retrieval.  2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).  1, 307–310 (2000).
  13. Bencharef O., Jarmouni B., Moussaid N., Souissi A.  A New Approach for Similar Images Using Game Theory.  Applied Mathematical Sciences.  8 (163), 8099–8111 (2014).
  14. Azencott C. A.  Introduction au Machine Learning.  Dunod (2019).
  15. Aboulaich R., Habbal A.,  Moussaid N.  Split of an Optimization Variable in Game Theory.  Mathematical Modelling of Natural Phenomena.  5 (7), 122–127 (2010).
  16. Nash J. F.  Non-cooperative Games.  Annals of Mathematics.  54 (2), 286–295 (1951).
  17. Aubin J. P.  Mathematical Methods of Game and Economic Theory.  North-Holland Publishing Co. Amsterdam, New York (1979).
  18. Grubinger M.  Analysis and Evaluation of Visual Information Systems Performance.  PhD thesis, Victoria University, Melbourne, Australia (2007).