Проект інформаційної системи розпізнавання математичних виразів

2018;
: сс. 103 - 110
Автори: 
Верес О.М., Рішняк І.В., Цюпяк Т.О.

Національний університет «Львівська політехніка», кафедра інформаційних систем та мереж E-mail: Oleh.M.Veres@lpnu.ua

У статті описано дослідження особливості методів та алгоритмів розпізнавання математичних виразів. Досліджено можливість одночасного виконування структурного аналізу та класифікації символів. Описано процес класифікації символів та побудови відповідної системи, що ґрунтується на методах машинного навчання. Розроблений ітеративний алгоритм реалізовано в проекті інтелектуальної інформаційної системи розпізнавання математичних виразів.

  1. Optychne_rozpiznavannya_symvoliv [Electronic resource] – Available : https://uk.wikipedia.org/wiki/
  2. ABBYY FineReader 14 [Electronic resource] – Available: http://www.abbyy.ua/ua/.
  3. SimpleOCR [Electronic resource] – Available: https://www.simpleocr.com/.
  4. Free OCR Software [Electronic resource] – Available: http://www.paperfile.net/.
  5. Microsoft Office Document Imaging [Electronic resource] – Available : https://ru.wikipedia.org/wiki/Microsoft_ Office_Document_Imaging.
  6. Antonacopoulos A. Competition on Historical Book Recognition / A. Antonacopoulos, C. Clausner, C. Papadopoulos, S. Pletschacher // 12th International Conference on Document Analysis and Recognition. – 2013. – No. 12. – P. 1459–1463.
  7. Potapov A. S. Rospoznavanie obrazov i mashynnoe vospriyatie / A. S. Potapov. – Sankt-Peterburg: Izdatelstvo "Politekchnika", 2007. – 548 s.
  8. Zanibbi R. Recognizing mathematical expressions using tree transformation / R. Zanibbi, D. Blostein, J. Cordy // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 2002. – No. 24. – P. 1455–1467.
  9. Tapia E. Recognition of on-line handwritten mathematical formulas in the e-chalk system / E. Tapia, R. Rojas // Seventh International Conference on Document Analysis and Recognition. – 2003. – No. 7. – P. 980–984.
  10. Zhang L. Using fuzzy logic to analyze superscript and subscript relations in handwritten mathematical expressions / L. Zhang, D. Blostein, Zanibbi R. // Eighth International Conference on Document Analysis and Recognition. – 2005. – No. 8. – P. 972–976.
  11. Suzuki T. Using fuzzy logic to analyze superscript and subscript relations in handwritten mathematical expressions / T. Suzuki, S. Aoshima, K. Mori, Y. Suenaga // Eighth International Conference on Pattern Recognition. – 2000. – No. 25. – P. 515–518.
  12. Toyozumi K. A system for realtime recognition of handwritten mathematical formulas / K. Toyozumi, T. Suzuki, K. Mori, Y. Suenaga // Sixth International Conference on Document Analysis and Recognition. – 2001. – No. 6. – P. 1059–1063.
  13. Lee H. Understanding mathematical expressions using procedure-oriented transformation / H. Lee, M. Lee // Pattern Recognition. – 1994. – No. 3. – P. 447–457.
  14. Chang S. A method for the structural analysis of two-dimensional mathematical expressions / S. Chang // Information Sciences. – 1970. – No. 3. – P. 253–272
  15. Chaudhuri B. An approach for recognition and interpretation of mathematical expressions in printed document / B. Chaudhuri, U. Garain // Pattern Analysis and Applications. – 2000. – №2. – P. 120–131.
  16. Tapia E. Recognition of on-line handwritten mathematical expressions using a minimum spanning tree construction and symbol dominance / E. Tapia, R. Rojas // Graphics Recognition Algorithms and Applications. – 2004. – (Lecture Notes in Computer Science). – P. 329–340.
  17. Xiangwei Q. The study of structure analysis strategy in handwritten recognition of general mathematical expression / Q. Xiangwei, P. Weimin, Y. Sup, W. Yang // International Forum on Information Technology and Applications. – 2009. – No. 2. – P. 101–107.
  18. Ha M. Structural analysis of printed mathematical expressions based on combined strategy / M. Ha, X. Tian, N. Li // International Conference on Machine Learning and Cybernetics. – 2006. – P. 2254–3358.
  19. Y. Eto and M. Suzuki. Mathematical formula recognition using virtual link network / Y. Eto, M. Suzuki // 6th International Conference on Document Analysis and Recognition. – 2001. – P. 762–767.
  20. Rhee T. Efficient search strategy in structural analysis for handwritten mathematical expression recognition / T. Rhee, J. Kim // Pattern Recognition. – 2009. – No. 12. – P. 3192–3201
  21. Miller E. Ambiguity and constraint in mathematical expression recognition / E. Miller, P. Viola // Fifteenth National Conference on Artificial Intelligence. Tenth Conference on Innovative Applications of Artificial Intelligence. – 1998. – P. 784–791.
  22. Chen Y. Fundamental study on structural understanding of mathematical expressions / Y. Chen, T. Shimizu, M. Okada // Systems, Man, and Cybernetics. – 1999. – P. 910–914.
  23. Tian X.. Structural analysis of printed mathematical expression / X. Tian, S. Wang, X. Liu // International Conference on Computational Intelligence and Security. – 2007. – P. 1030–1034.
  24. Garcia P. Using a generic document recognition method for mathematical formulae recognition / P. Garcia, B. Coüasnon // Graphics Recognition Algorithms and Applications.– 2001. – (Lecture Notes in Computer Science). – P. 236–244.
  25. Lavirotte S. Optical formula recognition / S. Lavirotte // 4th International Conference on Document Analysis and Recognition. – 1997. – P. 357–361.
  26. Awal A. Towards handwritten mathematical expression recognition / A. Awal, H. Mouchere, P. Viard-Gaudin // 10th International Conference on Document Analysis and Recognition. – 2009. – P. 1046–1050.
  27. Wang Z. Automatic perception of the structure of handwritten mathematical expressions / Z. Wang, C. Faure // In Computer Processing of Handwritting. – 1990. – P. 337–361.
  28. Winkler H. A soft-decision approach for structural analysis of handwritten mathematical expressions / H. Winkler, H. Fahrner, M. Lang // International Conference on Acoustics, Speech, and Signal Processing. – 1995. – P. 2459–2462.
  29. Genoe R. An online fuzzy approach to the structural analysis of handwritten mathematical expressions / R. Genoe, J. Fitzgerald, T. Kechadi // IEEE International Conference on Fuzzy Systems – 2006. – P. 244–250.
  30. Aly W. Identifying subscripts and superscripts in mathematical documents. / W. Aly, S. Uchida, M. Suzuki // Mathematics in Computer Science. – 2008. – P. 195–209.
  31. Верес О. М. Selection of methods for searching some or similar images / Oleh Veres, Yaroslav Kis, Vladislav Kugivchak, Igor Ryshniak // Informatsiyni systemy ta merezhi: [zb. nauk. pr.] / vidp. red. V.V. Pasichnyk. – Lʹviv: Vyd-vo Lʹviv. politekhniky, 2018. – S. 43–50. – (Visnyk / Nats. un-t "Lʹviv. politekhnika"; No. 887).
  32. Veres O., Rusyn B., Sachenko A., Rishnyak I. Choosing the method of finding similar images in the reverse search system // CEUR Workshop Proceedings. – 2018. – Vol. 2136: proceedings of the 2nd International conference on computational linguistics and intelligent systems. Lviv, Ukraine, June 25–27, 2018. Vol. 1. – P. 99–107.
  33. Gamma E. Methods of object-oriented design. Design Patterns. St. Petersburg: Publishing House "Peter", 2007. – 366 p.