Determination of optimal parameters of the barley brewer’s spent grain filtration drying

In this work, the calculation of specific energy consumption for the process of the barley brewer’s spent grain filtration drying was investigated. It has been determined that the lowest total energy consumption for the evaporation of 1 kg of moisture during the filtration drying of barley brewer’s spent grain from the initial moisture content of the material ω1 = 77.88 % (wt.) to the final value ω2 = 10 % (wt.) is 14898.087 kJ/kg H2O or 4.138 kW/kg H2O for the following process parameters: the height of the layer of dried material H = 120 mm, the thermal agent temperature T = 90 °C, the thermal agent velocity v0 = 1.81 m/sec. Determining the optimal process parameters at which the lowest energy costs for drying the material are possible is important for the design of drying equipment.

1. Eliopoulos, C., Arapoglou, D., Chorianopoulos, N., Markou, G., & Haroutounian, S. A. (2021). Conversion of brewers' spent grain into proteinaceous animal feed using solid state fermentation. Environmental Science and Pollution Research, 29(20), 29562-29569. https://doi.org/10.1007/s11356-021-15495-w
https://doi.org/10.1007/s11356-021-15495-w
2. Bianco, A., Budroni, M., Zara, S., Mannazzu, I., Fancello, F., & Zara, G. (2020). The role of microorganisms on biotransformation of Brewers' spent grain. Applied Microbiology and Biotechnology, 104(20), 8661-8678. https://doi.org/10.1007/s00253-020-10843-1
https://doi.org/10.1007/s00253-020-10843-1
3. Santos, M., Jiménez, J. J., Bartolomé, B., Gómez-Cordovés, C., & del Nozal, M. J. (2003). Variability of brewer's spent grain within a brewery. Food Chemistry, 80(1), 17-21. https://doi.org/10.1016/s0308-8146(02)00229-7
https://doi.org/10.1016/S0308-8146(02)00229-7
4. Mussatto, S. I., Dragone, G., & Roberto, I. C. (2006). Brewers' spent grain: generation, characteristics and potential applications. J. Cereal Sci., 43(1), 1-14. https://doi.org/10.1016/j.jcs.2005.06.001
https://doi.org/10.1016/j.jcs.2005.06.001
5. Ktenioudaki, A., Chaurin, V., Reis, S. F., & Gallagher, E. (2012). Brewer's spent grain as a functional ingredient for breadsticks. International Journal of Food Science & Technology, 47(8), 1765-1771. https://doi.org/10.1111/j.1365-2621.2012.03032.x
https://doi.org/10.1111/j.1365-2621.2012.03032.x
6. Ikram, S., Huang, L., Zhang, H., Wang, J., & Yin., M. (2017). Composition and Nutrient Value Proposition of Brewers Spent Grain. J. Food Sci., 82(10), 2232-2242. https://doi.org/10.1111/1750-3841.13794
https://doi.org/10.1111/1750-3841.13794
7. Bianco, A., Budroni, M., Zara, S., Mannazzu, I., Fancello, F., & Zara, G. (2020). The role of microorganisms on biotransformation of brewers' spent grain. Appl. Microbiol. Biotechnol., 104, 8661-8678. https://doi.org/10.1007/s00253-020-10843-1
https://doi.org/10.1007/s00253-020-10843-1
8. Aboukila, E. F., Nassar, I. N., Rashad, M., Hafez, M., & Norton, J. B. (2013). Reclamation of calcareous soil and improvement of squash growth using brewers' spent grain and compost. J. Saudi Soc. Agric. Sci., 17(4), 390-397. https://doi.org/10.1016/j.jssas.2016.09.005
https://doi.org/10.1016/j.jssas.2016.09.005
9. Mussatto, S. I. (2014). Brewer's spent grain: a valuable feedstock for industrial applications. J. Sci. Food Agric., 94(7), 1264-1275. https://doi.org/10.1002/jsfa.6486
https://doi.org/10.1002/jsfa.6486
10. Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kiiaieva, S. S., Duleba, V. P., & Sobechko, I. B. (2022). Research of solid fuel briquettes obtaining from brewer's spent grain. Journal of Chemistry and Technologies, 30(2), 216-221. https://doi.org/10.15421/jchemtech.v30i2.256749
https://doi.org/10.15421/jchemtech.v30i2.256749
11. Mujumdar, A.S. (Ed.). (2014). Handbook of Industrial Drying (4th ed.). CRC Press. https://doi.org/10.1201/b17208
https://doi.org/10.1201/b17208
12. Thibault, J., Alvarez, P. I., Blasco, R., & Vega, R. (2010). Modeling the mean residence time in a rotary dryer for various types of solids. Drying Technology, 28(10), 1136-1141. https://doi.org/10.1080/07373937.2010.483045
https://doi.org/10.1080/07373937.2010.483045
13. Ivashchuk, O. S., Atamanyuk, V. M., Gnativ, Z. Ya., Chyzhovych, R. A., & Zherebetskyi, R. R. (2021). Research into kinetics of filtration drying of alcohol distillery stillage. Voprosy Khimii i Khimicheskoi Tekhnologii, (4), 58-65. https://doi.org/10.32434/0321-4095-2021-137-4-58-65
https://doi.org/10.32434/0321-4095-2021-137-4-58-65
14. Mykychak, B., Biley, P., & Kindzera, D. (2013). External heat-and-mass transfer during drying of packed birch peeled veneer. Chemistry & Chemical Technology, 7(2), 191-195. https://doi.org/10.23939/chcht07.02.191
https://doi.org/10.23939/chcht07.02.191
15. Burdo, O. G., Terzsev, S. G., Knuish, A. I., & Kovalenko, E. A. (1997). The New Ways of organization Heat Transfer in Food Industry Apparatuses. Proc. 5-th Int. Heat Pipes Symp., 7-14.
16. Chyzhovych, R. A., Ivashchuk, O. S., Atamanyuk, V. M. (2023). CFD-modeling of thermal agent flow through a layer of barley brewer's spent grain. 2023 4th International Scientific Conference "Chemical Technology and Engineering". Proceedings, 31-37. https://doi.org/10.23939/cte2023.031
https://doi.org/10.23939/cte2023.031
17. Ivashchuk, O., Atamanyuk, V., Chyzhovych, R., Manastyrska, V., Barabakh, S., & Hnativ Z. (2024). Kinetic regularities of the barley brewer's spent grain filtration drying. Chemistry & Chemical Technologies, 18 (1), 66-75.
https://doi.org/10.23939/chcht18.01.066
18. Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kiiaieva, S. S., Zherebetskyi, R. R., & Sobechko, I. B. (2022). Preparation of an alternate solid fuel from alcohol distillery stillage. Voprosy Khimii i Khimicheskoi Tekhnologii, (1), 54-59. https://doi.org/10.32434/0321-4095-2022-140-1-54-59
https://doi.org/10.32434/0321-4095-2022-140-1-54-59
19. O'Keeffe, D., Lofts, G., Nelson, P., Pentland, P., et al. (2019). Jacaranda physics 1 VCE units 1 and 2 Fourth edition learnon and print. John Wiley & Sons Australia, Ltd. ISBN 978-0-730-37315-5
20. Van't Land, C.M. (2012). Drying in the Process Industry. Wiley. ISBN 978-0-470-13117-6