STUDY OF THE INFLUENCE OF DISPERSION AND CONDITIONS OF THERMAL ACTIVATION ON THE SORPTION PROPERTIES OF TRANSCARPATHIAN CLINOPTILOLITE AND PROSPECTS FOR ITS APPLICATION IN ENVIRONMENTAL TECHNOLOGIES

The influence of dispersion on the structural and sorption properties of the Transcarpathian clinoptilolite of the Sokyrnytske deposit was investigated by the method of complex thermal analysis. For a sample with a grain size of 0.14 mm, the effect of heat treatment on the ability to sorb water vapor was investigated. Thermal activation of clinoptilolite was carried out at temperatures of 200°C, 300°C, 400°C.The sorption capacity of natural and thermally activated clinoptilolite samples with relative to water vapor was investigated by thermal analysis. The obtained results were confirmed by infrared spectroscopy data. To study the effect of temperature on structural integrity, a sample of natural clinoptilolite was heated to a temperature of 550°C and analyzed by infrared spectroscopy. Activated at a temperature of 300°C, clinoptilolite was characterized by the maximum sorption capacity relative to water vapor and the highest content of sorption-active centers, the additional occurrence of which was not accompanied by the destruction of the clinoptilolite structure.To study the effect of temperature on structural integrity, a sample of natural clinoptilolite was analyzed by infrared spectroscopy. A sample of clinoptilolite with improved structural and sorption characteristics heat-activated at a temperature of 300°C is recommended for use in the processes of air drying, water purification and water treatment.

1. Basaraba, Y., & Zasadny, T. (2015). Prospects for the use of zeolites from the Sokyrnytsky deposit for natural water purificatio. Ecological Safety and Balanced Use of Resources Scientific and technical magazine, 1(11), 46 – 51. Retrieved from https://core.ac.uk/download/pdf/73902069.pdf

2. Baturevich, O. (2017). Рrospects of the application of minerals of natural origin in fish culture due to their physicalchemical properties and efficiency in animal breeding (a review). Fisheries Science of Ukraine, 2, 114-145. doi: https://doi.org/10.15407/fsu2017.02.114

3. Bondar, Yu. (2023). Influence of acid modification on hydrophobic/hydrophilic properties of clinoptilolite. Geochemistry of Technogenesis, 9(37), 15–19. doi: https://doi.org/10.32782/geotech2023.37.02

4. Dziedzicka, A., Sulikowski, B., & Ruggiero-Mikołajczyk, M. (2016). Catalytic and physicochemical properties of modified natural clinoptilolite. Catalysis Today, 259, 50–58. doi: https://doi.org/10.1016/j.cattod.2015.04.039

5. Fediv, I., Stepova, K., & Konanets, R. (2022). Effect of different modification methods on the sorption properties of clinoptilolite. Bulletin of Lviv State University of Life Safety, 26, 14-19. doi: https://doi.org/10.32447/20784643.26.2022.02

6. Garcia-Basabe, Y., Rodriguez-Iznaga, I., Menorval, L., Llewellyn, P., Maurin, G., Lewis, D., Binions, R., Autie, M., & Ruiz-Salvador, A. (2010). Step-wise dealumination of natural clinoptilolite: Structural and physicochemical characterization. Microporous and Mesoporous Materials, 135, 187-196. doi: https://doi.org/10.1016/j.micromeso.2010.07.008

7. Gatta, G., & Lotti, P. (2019). Systematics, crystal structures, and occurrences of zeolites. Modified Clay and Zeolite Nanocomposite Materials64, 1-25. doi: https://doi.org/10.1016/b978-0-12-814617-0.00001-3

8. Gorimbo, J., Taenzana, B., Muleja, A., Kuvarega, A., & Jewell,. L. (2018). Adsorption of cadmium, nickel and lead ions: equilibrium, kinetic and selectivity studies on modified clinoptilolites from the USA and RSA. Environmental Science and Pollution Research, 25(31), 30962-30978. doi: https://doi.org/10.1007/s11356-018-2992-0

9. Halaichak, S., Golovchuk, M., Datsko, B., Yatsyshyn, M., & Korniy, S. (2022). Morphology and thermal properties of zeolite mechanochemically modified by Ca, Zn and Mn (II) cations. Рroceedings of the Shevchenko scientific society, Chemical Sciences, LXX, 151–158. doi: https://doi.org/10.37827/ntsh.chem.2022.70.151

10. Ivanchenko, A., Sokol, O., Jelatoncev, D., Ljapka, K., & Revak, O. (2021). The use of acid-activated zeolite in the technology of wastewater treatment from dyes. Technical sciences and technologies, 4(26), 106–112. doi: https://doi.org/ 10.25140/2411-5363-2021-4(26)-106-112

11. Іvanenko O., Nosachova Y., & Krysenko Т. (2020). Comprehensive use of natural clinoptylolite in environmental protection technologies. Bulletin of NTUU «Igor Sikorsky Kyiv Polytechnic Institute», Series «Chemical Engineering, Ecology and Resource Saving», 4, 66–82. doi: https://doi.org/10.20535/2617-9741.4.2020.219786

12. Malovanyy, M., & Petrushka, I. (2012). Wastewater treatment with natural sorbents: Monograph. Lviv: Lviv Polytechnic National University.

13. Mansouri, N., Rikhtegar, N., Panahi, H. A., Atabi, F., & Shahraki, B. K. (2013). Рorosity, Сharacterization and structural properties of natural zeolite – clinoptilolite – as a sorbent. Environment Protection Engineering, 39(1), 139-152. doi: https://doi.org/10.37190/epe130111

14. Mastinu, A., Kumar, A., Maccarinelli, G., Bonini, S., Premoli, M., Aria, F., Gianoncelli, A., & Memo, M. (2019). Zeolite Clinoptilolite: Therapeutic Virtues of an Ancient Mineral. Molecules, 24(8), 1517. doi: https://doi.org/10.3390/molecules24081517

15. Matiyuk, S., & Grubynko, V. (2019). The use of natural and absorbent substances for the purification of natural and clean waters. Scientific Issue Ternopil Volodymyr Hnatiuk National Pedagogical University. Series: Biology, 4(78), 69-85. doi: https://doi.org/10.25128/2078-2357.19.4.10

16. Melnyk, L., Sviderskyi, V., & Chernyak, L. (2022) Features of volcanic rocks as materials for polymeric coposites. Herald of Khmelnytskyi national university, 1(305), 14-20. doi: https://doi.org/10.31891/2307-5732-2022-305-1-14-15

17. Milyovich, S., Gomonaj, V., Kovalčíková, А., Shepa, І., Molčanová, Z., Barchiy, I., Pavlyuk, V., & Stercho, I. (2019). Сhemical composition and crystal structure of the natural clinoptylolite deposit of sakyrnitsya and its modified forms. Scientific Bulletin of the Uzhhorod University. Series «Chemistry», 2(42) 73-80. doi: https://doi.org/10.24144/2414-0260.2019.2.73-80

18. Rudko, H., & Petryshyn, V. (2019). Prospects of use of zeolites in Ukraine. Sixth scientific-practical conference «Subsoil use in Ukraine. Рrospects for investment», Ukraine, Truskavets. Retrieved from http://conf2019.dkz.gov.ua/files/2019_materials_vol_1_net.pdf

19. Sabadash, V., & Gumnitskyі, J. (2020). Investigation of thermodynamics of orthophosphoric acid adsorption by natural zeolite under static conditions. Scientific Works, 84(1), 4-9. doi: https://doi.org/10.15673/swonaft.v84i1.1878

20. SE Transcarpathian Zeolite Plant (2024). Retrieved from http://www.dpzzz.com/ua/publications.htm

21. Sirovatskyi, O., Karagyaur, A., Gaiduchok, O., & Titov, A. (2023) Іncreasing the efficiency of filters of beverage preparation stations. Proceedings of the VІIІ International Scientific and Technical Conference Рure water. fundamental, applied and industrial aspects 9-10 November 2023, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute». Retrieved from http://purewater.net.ua/wp-content/uploads/2023/11/Proceedings-of-Pure-w...

22. Rakytska, T., Ennan, A., Kiose, Т., Golubchik, K., Oleksenko, L., Dlubovskiy, R., & Geraseva, V. (2016). Effect of the time of acid-thermal modification of clinoptilolite on its structure-adsorption characteristics. Bulletin of Odessa National University, Chemistry, 21, 1(57), 24-35. doi: https://doi.org/ 10.18524/2304-0947.2016.1(57).67509

23. Rakitska, T., Kiose, T. T., Truba, A., & Raskola, L. (2018) Physico-chemical properties of natural sorbents and metal complexes catalysts based on them: a study guide for chemical students of the faculty, specialty 102 Chemistry. Odesa: Odesa National University named after I. I. Mechnikov. Retrieved from https://dspace.onu.edu.ua/server/api/core/bitstreams/8fb85701-dedc-437d-...

24. Rakitskaya T., Truba A., Raskola, L., & Stoyanova, I. (2015). The study of clinoptilolite modified with3d metals halides by ir and diffuse reflectance spectroscopy. Odesa National University Herald. Chemistry, 20 (2(54)), 6–15. doi: https://doi.org/10.18524/2304-0947.2015.2(54).50624

25. Vasylechko, V., Gryshchouk, G., Zakordonskiy, V., & Vyviurska, O., Pashuk, А. (2015). A solid-phase extraction method using Transcarpathian clinoptilolite for preconcentration of trace amounts of terbium in water samples. Chemistry Central Journal45(7). doi: https://doi.org/0.1186/s113065-015-0118-z

26. Vasylechko, V., Gryshchouk, G., Rubay, G., Kalychak, Ya., & Lomnytska, Ya. (2017). Transcarpathian clinoptilolite as a sorbent for theremoval of trace amounts of cobalt (II) by solid phase extraction method. Visnyk of the Lviv University. Series Chemistry, 58(1), 198-208. Retrieved from http://publications.lnu.edu.ua/bulletins/index.php/chemisrty/article/vie...

27. Wang, C., Leng, S., Guo, H., Cao, L., & Huang, J. (2019). Acid and alkali treatments for regulation of hydrophilicity/hydrophobicity of natural zeolite. Applied Surface Science, 478, 319–326. doi: https://doi.org/ 10.1016/j.apsusc.2019.01.263

28. Zendelska, A., Golomeova, M., Jakupi, Š., Lisičkov, K., Kuvendžiev, S., & Marinkovski, M. (2018). Сharacterization and application of clinoptilolite for removal of heavy metal ions from water resources. Geologica Macedonica, 32(1), 21-32. Retrieved from https://js.ugd.edu.mk/index.php/GEOLMAC/article/view/2311