The changes in the crystal structure of polyhydroxybutyrate, polylactide, and their blends during biodegradation under the influence of bacteria and fungi were studied using X-ray diffraction analysis. It was found that microorganisms induce structural transformations in polymers, which occur without significant mass loss of the samples. X-ray diffraction analysis revealed that biodegradation is a complex multifactorial process that depends on the nature of the polymer and microorganisms and is characterized by microstructural changes in the film samples.
1. Rhodes, C. J. (2018). Plastic pollution and potential solutions. Science Progress, 101(3), 207–260. https://doi.org/10.3184/003685018x15294876706211
2. Omer, N. S. S., & Hassan, N. N. E. (2024). Application of biodegradable plastic and their environmental impacts: A revie. World Journal of Advanced Research and Reviews, 21(1), 2139–2148. https://doi.org/10.30574/wjarr.2024.21.1.0155.
3. Rajan, K. P., Thomas, S. P., Gopanna, A., & Chavali, M. (2018). Polyhydroxybutyrate (PHB): a standout biopolymer for environmental sustainability. In Springer eBooks (p. 1–23). https://doi.org/10.1007/978-3-319-48281- 1_92-2
4. Semenyuk, I. V., Korets’ka, N. I., Pokyn’broda, T. YA., Kochubey, V. V., Semenyuk, N. B., Mel’nyk, YU. YA. (2024). Doslidzhennya hidrolitychnoyi dehradatsiyi polihidroksialkanoativ i yikh sumishey z polilaktydamy. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 7(1), 237–244. https://doi.org/10.23939/ctas2024.01.237
5. Avérous, L. (2008). Polylactic acid: synthesis, properties and applications. In Elsevier eBooks (p. 433– 450). https://doi.org/10.1016/b978-0-08-045316-3.00021-1
6. Arrieta, M., López, J., López, D., Kenny, J., & Peponi, L. (2015). Development of flexible materials based on plasticized electrospun PLA–PHB blends: Structural, thermal, mechanical and disintegration properties. European Polymer Journal, 73, 433–446. https://doi.org/10.1016/j.eurpolymj.2015.10.036
7. Raza, Z. A., Khalil, S., & Abid, S. (2020). Recent progress in development and chemical modification of poly(hydroxybutyrate)-based blends for potential medical applications. International Journal of Biological Macromolecules, 160, 77–100. https://doi.org/10.1016/ j.ijbiomac.2020.05.114
8. Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology, 30(2), 67–79. https://doi.org/10.1002/adv.20235
9. Semeniuk, I. V., Kocubei, V. V., Skorokhoda, V. Y., Melnyk, Y. Y., Semenyuk, N. B., Koretska, N. I., & Pokynbroda, T. Y. (2022). Temperature and physical- mechanical properties of thermoplastic materials based on polyhydroxybutyrate. Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 80–87. DOI: 10.32434/0321-4095-2022- 145-6-80-87
10. Semeniuk, I., Kochubei, V., Karpenko, E., Melnyk, Y., Skorokhoda, V., & Semenyuk, N. (2023). Thermal and physico-mechanical properties of biodegra- dable materials based on polyhydroxyalkanoates. Polimery, 67(11–12), 561–566. https://doi.org/10.14314/polimery. 2022.11.3
11. Chen, Z., Zhang, X., Fu, Y., Jin, Y., Weng, Y., Bian, X., & Chen, X. (2024). Degradation behaviors of polylactic acid, polyglycolic acid, and their copolymer films in simulated marine environments. Polymers, 16(13), 1765. https://doi.org/10.3390/polym16131765
12. Koh, L. M., & Khor, S. M. (2023). Biodegradation process: basics, factors affecting, and industrial applications. In Springer eBooks (p. 19–56). https://doi.org/10.1007/978-3-031-09710-2_66
13. Giraldo-Narcizo, S., Guenani, N., Sánchez‐Pérez, A. M., & Guerrero, A. (2022). Accelerated polyethylene terephthalate (PET) enzymatic degradation by room temperature alkali pre-treatment for reduced polymer crystallinity. Chem.Bio.Chem., 24(1). https://doi.org/10.1002/cbic.202200503
14. Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 1627– 1639. https://doi.org/10.1021/ac60214a047
15. Uzun, G., & Aydemir, D. (2017). Biocomposites from polyhydroxybutyrate and bio-fillers by solvent casting method. Bulletin of Materials Science, 40(2), 383–393. https://doi.org/10.1007/s12034-017-1371-7
16. Rabiej, M. (2003). Application of the genetic algorithms and multiobjective optimization to the resolution of X-Ray diffraction curves of semicrystalline polymers. Fibres and Textiles in Eastern Europe, 11(5), 83–87.
17. Rabiej, S. (1991). A comparison of two X-ray diffraction procedures for crystallinity determination. European Polymer Journal, 27(9), 947–954. https://doi.org/10.1016/0014-3057(91)90038-p
18. Kim, J., Gupta, N. S., Bezek, L. B., Linn, J., Be- jagam, K. K., Banerjee, S., Dumont, J. H., Nam, S. Y., Kang, H. W., Park, C. H., Pilania, G., Iverson, C. N., Marrone, B. L., & Lee, K. (2023). Biodegradation studies of polyhydro- xybutyrate and Polyhydroxybutyrate-co-Polyhydroxyvalerate films in soil. International Journal of Molecular Sciences, 24(8), 7638. https://doi.org/10.3390/ijms24087638