ОСОБЛИВОСТІ ОДЕРЖАННЯ І ВЛАСТИВОСТІ БІНАРНИХ СУМІШІВ ПОЛІЛАКТИДІВ. ОГЛЯД

1
Національний університет “Львівська політехніка”
2
Національний університет “Львівська політехніка”
3
Національний університет “Львівська політехніка”
4
Національний університет “Львівська політехніка”
5
Національний університет “Львівська політехніка”
6
Національний університет “Львівська політехніка”

Розглянуто  технологічні  особливості  одержання  біодеградабельних  бінарних  сумішей полілактиду  з  полігідроксибутиратом,  полікапролактоном,  термопластичним  крохмалем, полібутиленадипат-котерефталатом,  полібутиленсукцинатом,  полібутиленсукцинат-коаді- патом.  Виявлено  вплив  полімерних  додатків  на  фізико-механічні,  теплофізичні,  техноло- гічні  властивості  та  здатність  до  біодеградації  і  біосумсності  отриманих  матеріалів. Розглянуто  основні  можливі  способи  підвищення  технологічної  сумісності  компонентів біодеградабельних бінарних сумішей на основі полілактиду.  

1. Garlotta, A (2002) literature review of poly (lactic acid), J. Poly. Environ. 9, 63–84. https://doi.org/10.1023/A:1020200822435.

2. R.G. Sinclair, (1996) The case for polylactic acid as a commodity packaging plastic, J. Macromol. Sci., Part A: Pure Appl. Chem. 33,  33–585. https://doi.org/10. 1080/10601329608010880.

3. D.W. Grijpma, A.J. Pennings, (1994) (Co)polymers of L-lactide, 2. Mechanical properties, Macromol. Chem. Phys. 195, 1649–1663. https://doi.org/10.1002/macp. 1994.021950516.

4. R. Auras, B. Harte, S. Selke, (2014) An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835–864. https://doi.org/10.1002/mabi.200400043.

5. R.E. Drumright, P.R. Gruber, D.E. Henton, (2000) Polylactic acid technology. Adv. Mater. 12, 1841–1846. https://doi.org/10.1002/1521-4095(200012)12:23b1841:: AID-ADMA1841N3.0.CO;2-E.

6. M. Nofar, C.B. Park, (2014) Poly (lactic acid) foaming. Prog. Polym. Sci. 39, 1721–1741. https://doi.org/10.1016/j.progpolymsci.2014.04.001.

7. B. Gupta, N. Revagade, J. Hilborn, (2007) Poly (lactic acid) fiber: an overview, Prog. Polym. Sci. 32, 455–482. https://doi.org/10.1016/j.progpolymsci.2007.01.005.

8. L.T. Lim, R. Auras, M. Rubino, (2008) Processing technologies for poly (lactic acid). Prog. Polym. Sci. 33, 820–852. https://doi.org/10.1016/j.progpolymsci.2008.05. 004.

9. S. Saeidlou, M.A. Huneault, H. Li, C.B. Park, (2012) Poly (lactic acid) crystallization. Prog. Polym. Sci. 37, 1657–1677. https://doi.org/10.1016/j.progpolymsci.2012. 07.005.

10. R.M. Rasal, A.V. Janorkar, D.E. Hirt, (2010) Poly (lactic acid) modifications. Prog. Polym. Sci. 35, 338–356. https://doi.org/10.1016/j.progpolymsci.2009.12.003.

11. J. Dorgan, J. Janzen, M. Clayton, S. Hait, D. Knauss, (2005) Melt rheology of variable L-content poly(lactic acid). J. Rheol. 49, 607–619. https://doi.org/10.1122/1. 1896957.

12. J. Dorgan, J. Williams, (1999) Melt rheology of poly(lactic acid), entanglement and chainarchitecture effects. J. Rheol. 43, 1141–1155. https://doi.org/10.1122/ 1.551041.

13. V. E. Levytskyi, A. S. Маsyuk, L. М. Bilyi, T. Bialopiotrowicz, T. V. Humenetskyi & A. М. Shybanova (2020) Influence of Silicate Nucleation Agent Modified with Polyvinylpyrrolidone on the Morphology and Properties of Polypropylene. Materials Science. 55, 555–562.

14. Masyuk A.S., Kysilʹ Kh.V.,  Katruk D.S., Skorokhoda V.Y., Bilyy L.M., Humenetsʹkyy T.V. (2020)  Pruzhno-plastychni vlastyvosti polilaktydnykh kompozytiv z dribnodyspersnymy napovnyuvachamy // Fizyko-khimichna mekhanika materialiv. 56, 31-38.

15. Lee Tin Sin Bee Soo Tueen Polylactic Acid 2nd Edition. A Practical Guide for the Processing, Manufacturing, and Applications of PLA. - Oxford:William Andrew, 2019. - 422 p.

16. Maria Laura, Di Lorenzo RenéAndrosch Industrial Applications of Poly(lactic acid). – Cham:Springer, 2018. –228 p.

17. Mohammadreza Nofar, Dilara Sacligil, Pierre J. Carreau, Musa R. Kamal, Marie-Claude Heuzey (2019) Poly (lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules. 307–360.

18. Woo Yeul Jang, Boo Young Shin†, Tae Jin Lee, and Ramani Narayan (2007) Thermal Properties and Morphology of Biodegradable PLA/Starch Compatibilized Blends. J. Ind. Eng. Chem. 13, 457-464.

19. Bastioli, C., (2001) Global status of the production of biobased packaging materials. Starch/Starke. 53, 351–355.

20. Lescher, P., Jayaraman, K., Bhattacharyya, D. (2009) Water-free blending of thermoplastic starch and polyethylene for rotomoulding. Starch/Starke. 61, 43–45.

21. Pyshpadass, H. A., Marx, D. B., Hanna, M. A., (2008) Effects of extrusion temperature and plasticizers on the physical and functional properties of starch films. Starch/Starke. 60, 527–538.

22. Mihai, M., Huneault, M. A., Favis, B. D., Li, H., (2007) Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends. Macromol. Biosci. 7, 907–920.

23. Wilpiszewska, K., Spychaj, T., (2006) Thermal plasticization of starch by extrusion in the presence of plasticizers. Polimery (Warsaw, Poland) 51, 327–332.

24. Ma, X., Yu, J., (2004) Studies on the properties of formamide plasticized-thermoplastic starch. Acta Polym. Sin. 2, 240–245.

25. Xie, F. W., Yu, L., Liu, H. S., Chen, L., (2006) Starch modification using reactive extrusion. Starch/Starke 58, 131–139.

26. S. Jacobsen, H.G. Fritz, (1996) Filling of poly(lactic acid) with native starch. Polym. Eng. Sci. 36, 2799–2804. https://doi.org/10.1002/pen.10680.

27. D.W. Grijpma, R.D.A. Van Hofslot, H. Supèr, A.J. Nijenhuis, A.J. Pennings, (1994) Rubber toughening of poly(lactide) by blending and block copolymerization, Polym. Eng. Sci. 34, 1674–1684, https://doi.org/10.1002/pen.760342205.

28. G. Biresaw, C.J. Carriere, (2001) Correlation between mechanical adhesion and interfacial properties of starch/biodegradable polyester blends. J. Polym. Phys. Part. B 39, 920–930. https://doi.org/10.1002/polb.1067.abs.

29. E. Blümm, A.J. Owen, (1995) Miscibility, crystallization, and melting of poly(3-hydroxybutyrate)/poly(L-lactide blends). Polymer 36, 4077–4081. https:// doi.org/10.1016/0032-3861(95)90987-D.

30. Ohkoshia, H. Abeb, Y. Doi, (2000) Miscibility and solid-state structures for blends of poly [(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate], Polymer. 41, 5985–5992. https://doi.org/10.1016/S0032-3861(99)00781-8.

31. L. Zhang, C. Xiong, X. Deng, (1996) Miscibility, crystallization, and morphology of poly(β-hydroxybutyrate)/poly(D,L-lactide) blends, Polymer. 37, 235–241, https://doi.org/10.1016/0032-3861(96)81093-7.

32. A.P. Bonartsev, A.P. Boskhomodgiev, A.L. Iordanskii, G.A. Bonartseva, A.V. Rebrov, T.K. Makhina, V.L. Myshkina, S.A. Yakovlev, E.A. Filatova, E.A. Ivanov, D.V. Bagrov, G.E. Zaikov (2012) Hydrolytic degradation of poly(3-hydroxybutyrate), polylactide and their derivatives: kinetics, crystallinity, and surface morphology. Mol. Cryst. Liq. Cryst. 556, 288–300, https://doi.org/10.1080/ 15421406.2012.635982.

33.  J. Zhang, H. Sato, T. Furukawa, H. Tsuji, I. Noda, Y. Ozaki (2006) Crystallization behaviors of poly(3-hydroxybutyrate) and poly(L-lactic acid) in their immiscible and miscible blends. J. Phys. Chem. 110, 24463–24471. https://doi.org/10.1021/jp065233c

34. I. Armentano, E. Fortunati, N. Burgos, F. Dominici, F. Luzi, S. Fiori, A. Jimenez, K. Yoon, j. Ahn, S. Kang, J.M. Kenny (2015) Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polym Lett. 9,583–596, https://doi.org/10.3144/expresspolymlett.2015.55.

35. M.A. Woodruff, D.W. Hutmacher, (2010) The return of a forgotten polymer— polycaprolactone in the 21st century. Prog. Polym. Sci. 35, 1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002.

36. H. Kweon, M.K. Yoo, I.K. Park, T.H. Kim, H.C. Lee, H. Lee, J. Oh, T. Akaike, C. Cho (2003) A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 24, 801–808, https://doi.org/10.1016/s0142-9612(02)00370-8.

37. K. Fukushima, J.L. Feijoo, M.-C. Yang (2013) Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend. Eur. Polym. J. 49, 706–717. https://doi.org/10.1016/j.eurpolymj.2012.12.011.

38. L. Liu, S. Li, H. Garreau, M. Vert, (2000) Selective enzymatic degradations of poly(l-lactide) and poly(ε-caprolactone) blend films. Biomacromolecules. 1, 350–359, https://doi.org/10.1021/bm000046k.

39. G. Sivalingam, S.P. Vijayalakshmi, G. Madras (2004) Enzymatic and thermal degradation of poly(ε-caprolactone), poly(d,l-lactide), and their blends. Ind. Eng. Chem. Res. 43, 7702–7709, https://doi.org/10.1021/ie049589r.

40. L.A. Gaona, J.G. Ribelles, J.E. Perilla, M. (2012) Lebourg, Hydrolytic degradation of PLLA/PCL microporous membranes prepared by freeze extraction. Polym. Degrad. Stab. 97, 1621–1632. https://doi.org/10.1016/j. polymdegradstab.2012.06.031.

41. O.J. Botlhoko, J. Ramontja, S.S. Ray (2018) A new insight into morphological, thermal, and mechanical properties of melt-processed polylactide/poly(ε-caprolactone) blends. Polym. Degrad. Stab. 154, 84–95. https://doi. org/10.1016/j.polymdegradstab.2018.05.025.

42. L. Gardella, M. Calabrese, O. Monticelli (2012) PLA maleation: an easy and effective method to modify the properties of PLA/PCL immiscible blends. Colloid Polym. Sci. 292, 2391–2398. https://doi.org/10.1007/s00396-014-3328-3.

43. L. Jiang, M.P. Wolcott, J. Zhang (2006) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules. 7, 199–207. https:// doi.org/10.1021/bm050581q.

44. M. Nofar, A. Tabatabaei, H. Sojoudiasli, C. Park, P. Carreau, M.-C. Heuzey, et al. (2017) Me-chanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with differ-ent morphologies. Eur. Polym. J. 90, 231–244. https://doi.org/10.1016/j. eurpolymj.2017.03.031.

45. Y. Deng, C. Yu, P. Wongwiwattana, N.L. Thomas (2018) Optimising ductility of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends through co-continuous phase morphology. J. Polym. Environ. 26, 3802–3816. https://doi.org/10. 1007/s10924-018-1256-x.

46. M.-B. Coltelli, I.D. Maggiore, M. Bertoldo, F. Signori, S. Bronco, F. Ciardelli (2008) Poly(lac-tic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization. J. Appl. Polym. Sci. 110, 1250–1262. https://doi.org/10.1002/app.28512.

47. R. Al-Itry, K. Lamnawar, A. Maazouz, N. Billon, C. (2015) Combeaud, Effect of the simulta-neous biaxial stretching on the structural and mechanical properties of PLA, PBAT and their blends at rubbery state. Eur. Polym. J. 68, 288–301. https://doi.org/ 10.1016/j.eurpolymj.2015.05.001.

48. L.C. Arruda, M. Magaton, R.E.S. Bretas, M.M. Ueki (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym. Test. 43, 27–37. https://doi.org/10.1016/j.polymertesting. 2015.02.005.

49. W. Dong, B. Zou, Y. Yan, P. Ma, M. Chen (2013) Effect of chain-extenders on the properties and hydrolytic degradation behavior of the poly(lactide)/poly(butylene adipate-co-terephthalate) blends. Int. J. Mol. Sci. 14, 20189–20203. https://doi.org/ 10.3390/ijms141020189.

50. W. Dong, B. Zou, P. Ma, W. Liu, X. Zhou, D. Shi, et al. (2013) Influence of phthalic anhydride and bioxazoline on the mechanical and morphological properties of biodegradable poly(lactic acid)/poly[(butylene adipate)-co-terephthalate] blends. Polym. Int. 62, 1783–1790, https://doi.org/10.1002/pi.4568.

51. N. Zhang, Q. Wang, J. Ren, L. Wang (2008) Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J. Mater. Sci. 44, 250–256. https://doi.org/10.1007/s10853-008-3049-4.

52. M. Nishida, H. Ichihara, H. Watanabe, N. Fukuda, H. Ito (2015) Improvement of dynamic tensile properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) polymer alloys using a crosslinking agent and observation of fracture surfaces. Int. J. Impact Eng. 79, 117–125. https://doi.org/10.1016/j.ijimpeng.2014. 11.010.

53. N. Zhang, C. Zeng, L. Wang, J. Ren (2012) Preparation and properties of biodegradable poly (lactic acid)/poly(butylene adipate-co-terephthalate) blend with epoxy-functional styrene acrylic copolymer as reactive agent. J. Polym. Environ. 21, 286–292. https://doi.org/10.1007/s10924-012-0448-z.

54. P. Ma, X. Cai, Y. Zhang, S. Wang, W. Dong, M. Chen, et al. (2014) In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-tere-phthalate) blends by using dicumyl peroxide as a free-radical initiator. Polym. Degrad. Stab. 102, 145–151. https://doi.org/10.1016/j. polymdegradstab.2014.01.025.

55. N. Wu, H. Zhang (2017) Mechanical properties and phase morphology of super-tough PLA/PBAT/EMA-GMA multicomponent blends. Mater. Lett. 192, 17–20, https://doi.org/10.1016/j.matlet.2017.01.063.

56. M. Nofar, A. Maani, H. Sojoudi, M.C. Heuzey, P.J. Carreau (2015) Interfacial and rheo-logical properties of PLA/PBAT and PLA/PBSA blends and their morphological stability under shear flow. J. Rheol. 59, 317–333. https://doi.org/10. 1122/1.4905714.

57. M. Nofar, M.C. Heuzey, P.J. Carreau, M.R. Kamal, J. Randall (2016) Coalescence in PLA-PBAT blends under shear flow: effects of blend preparation and PLA molecular weight. J. Rheol. 60, 637–648. https://doi.org/10.1122/1.4953446.

58. H. Xiao, W. Lu, J.-T. Yeh (2009) Crystallization behavior of fully biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. Appl. Polym. Sci. 112, 3754–3763. https://doi.org/10.1002/app.29800.

59. B. Wang, X. Zhao, L. Wang (2013) Isothermal crystallization and melting behaviors of bio-degradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends compatibilized by transesterification. Polym.-Plast. Technol. Eng. 52, 718–726. https://doi.org/10.1080/03602559.2012.762671.

60. J.W. Park, S.S. Im (2002) Morphological changes during heating in poly(L-lactic acid)/poly (butylene succinate) blend systems as studied by synchrotron X-ray scattering. J. Polym. Sci. B Polym. Phys. 40, 1931–1939. https://doi.org/10.1002/polb. 10240.

61. J.W. Park, S.S. Im (2002) Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate). J. Appl. Polym. Sci. 86, 647–655, https://doi. org/10.1002/app.10923.

62. Y. Deng, N. Thomas (2015) Blending poly(butylene succinate) with poly(lactic acid): ductility and phase inversion effects. Eur. Polym. J. 71, 534–546. https://doi.org/10.1016/j.eurpolymj.2015.08.029

63. T. Yokohara, M. Yamaguchi (2008) Structure and properties for biomass-based polyester blends of PLA and PBS. Eur. Polym. J. 44, 677–685. https://doi.org/10. 1016/j.eurpolymj.2008.01.008.

64. S. Lee, J.W. Lee (2005) Characterization and processing of biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate). Korea Aust. Rheol J. 17, 71–77. (doi=10.1.1.455.4151&rep=rep1&type=).

65. W. Pivsa-Art, S. Pivsa-Art, K. Fujii, K. Nomura, K. Ishimoto, Y. Aso, et al. (2014) Compression molding and melt-spinning of the blends of poly(lactic acid) and poly(butylene succinate-co-adipate). J. Appl. Polym. Sci. 132. https://doi.org/10.1002/app.41856.

66. R. Wang, S. Wang, Y. Zhang (2009) Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites. J. Appl. Polym. Sci. 113, 3095–3102. https://doi.org/10.1002/app.30333

67. H. Eslami, M.R. Kamal (2013) Effect of a chain extender on the rheological and mechanical properties of biodegradable poly(lactic acid)/poly[(butylene succinate)-coadipate] blends. J. Appl. Polym. Sci. 129, 2418–2428. https://doi.org/10.1002/app.38449