Two-Dimensional Modeling of Explosion Impulses on a Structure Using the Discrete Element Method

Explosive phenomena pose significant threats to structural integrity, necessitating accurate prediction models for designing resilient infrastructure.  Traditional computational approaches like CFD and FEM, while detailed, require substantial computational resources and specialized expertise.  This study presents an alternative approach using the Discrete Element Method (DEM) implemented through the Pymunk physics engine for 2D explosion modeling.  The developed method models explosions as radially distributed particles with initial impulses, simulating shock wave propagation through particle collisions.  Structures are represented using a modular approach, enabling detailed analysis of impulse distribution across different building elements.  The simulation tracks collision events and calculates impulse transfer using momentum conservation principles.  Model validation was performed against UFC 3–340–02 standards by investigating three scaling methods: proportional coefficient, linear regression, and a non-linear power–law model.  The power–law model demonstrated the best agreement with reference data, confirming the model's accuracy with a total integral error of only 1.5%.  This computationally efficient approach provides a practical tool for structural engineers and urban planners to incorporate blast resistance considerations without requiring high–performance computing resources.  The method successfully balances computational efficiency with physical fidelity, making explosion modeling more accessible for rapid assessment scenarios and preliminary design stages.

  1. Chester A., Critchley R., Hazael R.  A comparison of far-field explosive loads by a selection of current and emerging blast software.  International Journal of Protective Structures.  16 (2), 387–418 (2024).
  2. Liu M. B., Liu G. R., Zong Z., Lam K. Y.  Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology.  Computers & Fluids.  32 (3), 305–322 (2003).
  3. UFC 3-340-02 Engineers.  Structures to Resist the Effects of Accidental Explosions.  Department of Defense, Washington, DC (2005).
  4. Friedlander F. G.  The diffraction of sound pulses. I. Diffraction by a semi-infinite plane.  Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.  186 (1006), 322–344 (1946).
  5. Shirbhate P. A., Goel M. D.  A Critical Review of Blast Wave Parameters and Approaches for Blast Load Mitigation.  Archives of Computational Methods in Engineering.  28, 1713–1730 (2020).
  6. Lomazzi L., Giglio M., Manes A.  Analysis of the blast wave – structure interface phenomenon in case of explosive events.  IOP Conference Series: Materials Science and Engineering.  1038 (1), 012083 (2021).
  7. Ullah A., Ahmad F., Jang H.-W., Kim S.-W., Hong J.-W.  Review of analytical and empirical estimations for incident blast pressure.  KSCE Journal of Civil Engineering.  21 (6), 2211–2225 (2017).
  8. Baker W. E., Cox P. A., Westine P. S., Kulesz J. J., Strehlow R. A.  Explosion hazards and evaluation.  Elsevier (1983).
  9. Chipmunk2D.  Chipmunk2D Physics: Official Documentation – Collision Detection (2023).
  10. Montaut L., Le Lidec Q., Petrik V., Sivic J., Carpentier J.  Collision Detection Accelerated: An Optimization Perspective.  Preprint arXiv:2205.09663 (2022).