Полімерні відходи як перспективна сировина для виробництва нафтопродуктів і будівельних матеріалів

2025;
: cc. 369 - 377
1
National Technical University ‘Kharkiv Polytechnic Institute’, Ukraine
2
National Technical University ‘Kharkiv Polytechnic Institute’, Ukraine
3
National Technical University ‘Kharkiv Polytechnic Institute’, Ukraine
4
Kharkiv National Automobile and Highway University, Ukraine
5
National University of Civil Defenсe of Ukraine

Розглянуто комплексний підхід до утилізації твердих полімерних відходів через їхню технологічну переробку в різні види паливно-мастильних і будівельних матеріалів. Запропонований підхід сприятиме покращенню екологічної ситуації в України (завдяки скороченню кількості полігонів і сміттєзвалищ). Цей комплексний підхід щодо поводження з твердими полімерними відходами полягає в їхньому збиранні, сортуванні, очищенні та термічній переробці.

[1] Semko, P. P. Realiyi spivrobitnytstva biznesu ta orhaniv mistsevoho samovryaduvannya v haluzi povodzhennya z tverdymy pobutovymy vidkhodamy v Ukrayini ta napryamy pokrashchennya sytuatsiyi. http://greenchamber.org.ua/files/files/2019/TBO/ BUSINESS%20REALITIES.pdf (accessed May 09, 2023).

[2] Mykhailova, E. Plastic pollution is one of the main environmental problem of humanity. Municipal Economy of Cities 2020, 4, 109–121. https://khg.kname.edu.ua/index.php/khg/article/view/5642

[3] Safranov, T. A.; Prykhodʹko, V. Y.; Mykhaylenko, V. I. Vidkhody plastykovykh materialiv: otsinka utvorennya ta povodzhennya v rehionakh pivnichno-zakhidnoho prychornomor'ya. Ukrainian hydrometeorological journal 2023, 31, 122–130. https://doi.org/10.31481/uhmj.31.2023.08

[4] Martínez-Narro, G.; Hassan, S.; Phan, A. N. Chemical Recycling of Plastic Waste for Sustainable Polymer Manufacturing – A  Critical Review. J. Environ. Chem. Eng. 2024, 12, 112323. https://doi.org/10.1016/j.jece.2024.112323

[5] Khoaele, K. K.; Gbadeyan, O. J.; Chunilall, V.; Sithole, B. The Devastation of Waste Plastic on the Environment and Remediation Processes: A Critical Review. Sustainability 2023, 15, 5233. https://doi.org/10.3390/su15065233

[6] Pielichowski, K.; Njuguna, J.; Majka,T. M. Thermal Degradation of Polymeric Materials, 2nd edition; Elsevier, 2022. 

[7] Shevchenko, K.; Grigorov, A.; Ponomarenko, V.; Nahliuk, M.; Bondarenko, O.; Stetsiuk, Y; Matukhno, V. Technology for Producing Components of Technological and Boiler Fuels from Polymer Raw. Pet. Coal 2021, 63, 34–40.

[8] Fahim, I.; Mohsen, O.; ElKayaly, D. Production of Fuel from Plastic Waste: A Feasible Business. Polymers 2021, 13, 915. https://doi.org/ 10.3390/polym13060915

[9] Olufemi, A. S.; Olagboye, S. Thermal Conversion of Waste Plastics into Fuel Oil. International Journal of Petrochemical Science & Engineering 2017, 2, 252‒257. https://doi.org/10.15406/ipcse.2017.02.00064

[10] Miandad, R.; Rehan, M.; Barakat, M. A.; Aburiazaiza, A. S.; Khan, H.; Ismail, I. M. I.; Dhavamani, J.; Gardy, J.; Hassanpour, A.; Nizami, A. Catalytic Pyrolysis of Plastic Waste: Moving Toward Pyrolysis Based Biorefineries. Front. Energy Res. 2019, 7, 1–17. https://doi.org/10.3389/fenrg.2019.00027

[11] Sivagami, K.; Divyapriya, G.; Selvaraj, R.; Madhiyazhagan, P.; Sriram, N; Nambi, I. Catalytic Pyrolysis of Polyolefin and Multilayer Packaging Based Waste Plastics: A Pilot Scale Study. Process Saf. Environ. Prot. 2021, 149, 497–506. https://doi.org/10.1016/j.psep.2020.10.038

[12] Rahman, M. H.; Bhoi, P. R.; Menezes, P. L. Pyrolysis of Waste Plastics into Fuels and Chemicals: A Review. Renew. Sustain. Energy Rev. 2023, 188, 113799. https://doi.org/10.1016/j.rser.2023.113799

[13] Padmanabhan, S.; Giridharan, K.; Stalin, B.; Kumaran, S.; Kavimani, V.; Nagaprasad, N.; Jule, L. T.; Krishnaraj, R. Energy Recovery of Waste Plastics into Diesel Fuel with Ethanol and Ethoxy Ethyl Acetate Additives on Circular Economy Strategy. Sci. Rep. 2022, 12, 5330. https://doi.org/10.1038/s41598-022-09148-2

[14] Ndiaye, N. K.; Derkyi, N. S. A.; Amankwah, E. Pyrolysis of Plastic Waste into Diesel Engine-Grade Oil. Sci.Afr. 2023, 21, e01836. https://doi.org/10.1016/j.sciaf.2023.e01836

[15] Capone, C.; Landro, L. D.; Inzoli, F.; Penco, M. Thermal and Mechanical Degradation during Polymer Extrusion Processing. Polym. Eng. Sci. 2007, 47, 1813–1819. http://dx.doi.org/10.1002/pen.20882

[16] Grigorov, A.; Sinkevich, I.; Ponomarenko, N.; Bondarenko, O.; Usachov, D.; Matukhno, V.; Shevchuk, O. Recycling of Polymer Waste into Plastic Lubricants. Pet. Coal 2022, 64, 709–713.

[17] Chumsantea, S.; Aryusuk, K.; Lilitchan, S.; Jeyashoke, N.; Krisnangkura, K. Reducing Oil Losses in Alkali Refining. JAOCS 2012, 89, 1913–1919. https://doi.org/10.1007/s11746-012-2079-x

[18] Made Kastiawan, I.; Nyoman Sutantra, I.; Sutikno. Effect of Melt Temperature and Holding Time on Mechanical Properties of Polypropylene Composites Bottom Ash Reinforced. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 988, 012117. https://doi:10.1088/1757-899X/988/1/012117

[19] Ibrahim, S. M.; Heikal, M.; Metwally, A. M.; Mohamed, O. A. Positive Impact of Polymer Impregnated on the Enhancement of the Physico-Mechanical Characteristics and Thermal Resistance of High-Volume Fly-Ash Blended Cement. Constr. Build. Mater2023, 381, 131243. https://doi.org/10.1016/j.conbuildmat.2023.131243

[20] Grygorov, A.; Tulska, A. Sposib vyznachennia adheziinykh vlastyvostei plastychnykh mastyl. UA No. 137396, October 25, 2019.

[21] Niyazbekova, R. K.; Userbaev, M. T.; Kokayeva, G. А.; Shansharova, L. S.; Konkanov, M. D.; Abdulina, S. A. Ash Deposits CHP – as an Additional Source of Raw Material for Construction Production. Chem. Eng. Trans. 2018, 70, 649–654. https://doi.org/10.3303/CET1870109 

[22] Hrynyshyn, K.; Chervinskyy, T.; Helzhynskyy, I.; Skorokhoda, V. Study on Regularities of Polyethylene Waste Low-Temperature Pyrolysis. Chem. Chem. Technol. 2023, 17, 923–928. https://doi.org/10.23939/chcht17.04.923

[23] Hrynyshyn, K.; Chervinskyy, T.; Skorokhoda, V. Study on the Composition and Properties of Pyrolysis Pyrocondensate of Used Tires. Chem. Chem. Technol. 2022, 16, 159–163. https://doi.org/10.23939/chcht16.01.159

[24] Jana, S. K.; Pattanayak, S.; Bhausaheb, M. S.; Ruidas, B. C.; Pal, D. B.. Pyrolysis of Waste Plastic to Fuel Conversion for Utilization in Internal Combustion Engine. Chem. Chem. Technol. 2023, 17, 438–449. https://doi.org/10.23939/chcht17.02.438

[25] Pyshyev, S.; Lypko, Y.; Korchak, B.; Poliuzhyn, I.; Hubrii, Z.; Pochapska, I.; Rudnieva, K. Study on the Composition of Gasoline Fractions Obtained as a Result of Waste Tires Pyrolysis and Production Bitumen Modifiers from it. J. Energy Inst. 2024, 114, 101598. https://doi.org/10.1016/j.joei.2024.101598

[26] Pyshyev, S.; Lypko, Y.; Chervinskyy, T.; Fedevych, O.; Kułażyński, M; Pstrowska, K. Application of Tyre Derived Pyrolysis Oil as a Fuel Component. S. Afr. J. Chem. Eng. 2023, 43, 342–347. https://doi.org/10.1016/j.sajce.2022.12.003

[27] Ranskiy, A.; Gordienko, O.; Korinenko, B.; Ishchenko, V.; Sakalova, H.; Vasylinych, T.; Malovanyy, M.; Kryklyvyi, R. Pyrolysis Processing of Polymer Waste Components of Electronic Products. Chem. Chem. Technol. 2024, 18, 103–108. https://doi.org/10.23939/chcht18.01.103

[28] Dvorkin, L. Y. Betony spetsialnogo priznachennia: Navchalnyyi posibnyk; Vydavnychyi dim “Kondor”, 2018.