Дослідження впливу технічного лігніну на властивості дорожнього бітуму

2025;
: cc. 395 - 402
1
Національний університет “Львівська політехніка”
2
Національний університет “Львівська політехніка”
3
Lviv Polytechnic National University, Ukraine
4
Національний університет “Львівська політехніка”
5
Lviv Polytechnic National University, Ukraine
6
Lviv Polytechnic National University, Ukraine

Проведено дослідження щодо впливу технічного лігніну на характеристики дорожнього бітуму, отриманого окисненням нафтових залишків (окисненого бітуму). Використано два зразки технічного лігніну гідролізного типу, отриманого як нецільовий продукт у процесі виробництва кормових дріжджів. Перший зразок – технічний лігнін, очищений просіюванням від непереробленого рослинного матеріалу. Другий зразок – технічний лігнін, очищений просіюванням від непереробленого рослинного матеріалу і флотаційним збагаченням від неорганічних компонентів. Проаналізовано результати додавання двох зразків технічного лігніну в різній кількості на основні експлуатаційні характеристики дорожнього бітуму. Зроблено висновок про доцільність використання технічного лігніну як відносно дешевого замінника значно дорожчого дорожнього нафтового бітуму. Зроблено висновок про ефективність флотаційного збагачення як методу підвищення чистоти технічного лігніну.

[1]     Leal Silva, J. F.; Nakasu, P.; Costa, A. C. D.; Maciel Filho, R.; Rabelo, S. C. Techno-Economic Analysis of the Production of 2G Ethanol and Technical Lignin via a Protic Ionic Liquid Pretreatment of Sugarcane Bagasse. Ind. Crops Prod. 2022, 189, 115788. https://doi.org/10.1016/j.indcrop.2022.115788

[2]     Schwaighofer, M.: Königsberger, M.: Zelaya-Lainez, L.; Lukacevic, M.; Serna-Loaiza, S.; Harasek, M.; Füssl, J. The Viscoelastic Behavior of Lignin: Quantification Through Nanoindentation Relaxation Testing on Hot-Pressed Technical Lignin Samples from Various Origins. Mech. Mater. 2024, 188, 104864. https://doi.org/10.1016/j.mechmat.2023.104864

[3]     Jeffri, N. I.; Rawi, N. F. M.; Kassim, M. H. B. M.; Abdullah, C. K. Unlocking the Potential: Evolving Role of Technical Lignin in Diverse Applications and Overcoming Challenges. Int. J. Biol. Macromol. 2024, 274, 133506. https://doi.org/10.1016/j.ijbiomac.2024.133506

[4]     Alam, M. M.; Greco, A.; Rajabimashhadi, Z.; Corcione, C. Efficient and Environmentally Friendly Techniques for Extracting Lignin from Lignocellulose Biomass and Subsequent Uses: A Review. Clean. Mater. 2024, 13, 100253. https://doi.org/10.1016/j.clema.2024.100253

[5]     Pandit, S.; Sharma, P.; Prakash, A.; Lal, B.; Bhuyan, R.; Ahmad, I.; Kuila, A. A Comprehensive Review on Technical Lignin, Lignin Hydrogels, Properties, Preparation, Applications & Challenges in Lab to Market Transition. Ind. Crop. Prod. 2024, 211, 118262. https://doi.org/10.1016/j.indcrop.2024.118262

[6]     Kazzaz, A. E.; Fatehi, P. Technical Lignin and its Potential Modification Routes: A Mini-Review. Ind. Crop. Prod. 2020, 154, 112732. https://doi.org/10.1016/j.indcrop.2020.112732

[7]     Soltanian, S.; Aghbashlo, M.; Almasi, F.; Hosseinzadeh- Bandbafha, H.; Nizami, A.-S.; Ok, Y.S.; Lam, S.S.; Tabatabaei, M. A Critical Review of the Effects of Pretreatment Methods on the Exergetic Aspects of Lignocellulosic Biofuels. Energy Convers. Manag. 2020, 212, 112792. https://doi.org/10.1016/j.enconman.2020.112792

[8]     Gujjala, L. K. S.; Kim, J.; Won, W. Technical Lignin to Hydrogels: An Eclectic Review on Suitability, Synthesis, Applications, Challenges and Future Prospects. J. Clean. Prod. 2022, 363, 132585. https://doi.org/10.1016/j.jclepro.2022.132585d

[9]     Wang, C.; Kelley, S. S.; Venditti, R. A. 2016. Lignin  ‐Base Mater. 2020, 230, 116957. Thermoplastic Materials. ChemSusChem. 2016, 9, 770–783. https://doi.org/10.1002/cssc.201501531

[10]   Lange, H.; Decina, S.; Crestini, C. Oxidative Upgrade of Lignin-Recent Routes Reviewed. Eur. Polym. J. 2013, 49, 1151–1173. https://doi.org/10.1016/j.eurpolymj.2013.03.002

[11]   Tribot, A.; Amer, G.; Alio, M. A.; de Baynast, H.; Delattre, C.; Pons, A.; Mathias, J. D.; Callois, J. M.; Vial, C.; Michaud, P.; et al. Wood-Lignin: Supply, Extraction Processes and Use as Bio-Based Material. Eur. Polym. J. 2019, 112, 228–240. https://doi.org/10.1016/j.eurpolymj.2019.01.007

[12]   Vishtal, A. G.; Kraslawski, A. Challenges in Industrial Applications of Technical Lignins. Bioresour. 2011, 6, 3547–3568. http://dx.doi.org/10.15376/biores.6.3.3547-3568

[13]   Wang, S.; Shen, Q.; Su, S.; Lin, J.; Song, G. The Temptation from Homogeneous Linear Catechyl Lignin. Trends Chem. 2022, 4, 948–961. https://doi.org/10.1016/j.trechm.2022.07.008

[14]   Jin, Y.; Lin, J.; Cheng, Y.; Lu, C. Lignin-Based High- Performance Fibers by Textile Spinning Techniques. Materials 2021, 14, 3378. https://doi.org/10.3390/ma14123378

[15]   Sanchez, L. M.; Hopkins, A. K.; Espinosa, E.; Larraneta, E.; Malinova, D.; McShane, A. N.; Domínguez-Robles, J.; Rodríguez, A. Antioxidant Cellulose Nanofibers/Lignin-Based Aerogels: A Potential Material for Biomedical Applications. Chem.Biol.Technol.Agric2023, 10, 72. https://doi.org/10.1186/s40538-023-00438-z

[16]   Fazeli, M.; Mukherjee, S.; Baniasadi, H.; Abidnejad, R.; Mujtaba, M.; Lipponen, J.; Seppala, J.; Rojas, J.O. Lignin Beyond the status quo: Recent and Emerging Composite Applications. Green Chem. 2024, 26, 593–630. https://doi.org/10.1039/D3GC03154C

[17]   Ren, S.; Liu, X.; Zhang, Y.; Lin, P.; Apostolidis, P.; Erkens, S.; Xu, J. Multi-Scale Characterization of Lignin Modified Bitumen Using Experimental and Molecular Dynamics Simulation Methods. Constr. Build. Mater. 2021, 287, 123058. https://doi.org/10.1016/j.conbuildmat.2021.123058

[18]   Gunka, V.; Hrynchuk, Y.; Demchuk, Yu.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy, V.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211–220. https://doi.org/10.23939/chcht17.01.211

[19]   Prysiazhnyi, Y.; Grynyshyn, O.; Pyshyev, S.; Korchak, B.; Bratychak, M. Resins with Oxygen-Containing Functional Groups Obtained from Products of Fossil Fuels Processing: A Review of Achievements. Chem. Chem. Technol. 2023, 17, 574–591. https://doi.org/10.23939/chcht17.03.574

[20]   Wu, J.; Liu, Q.; Wang, C.; Wu, W.; Han, W. Investigation of Lignin as an Alternative Extender of Bitumen for Asphalt Pavements. J. Clean. Prod. 2021, 283, 124663. https://doi.org/10.1016/j.jclepro.2020.124663

[21]   He, B.; Xiao, Y.; Li, Y.; Fu, M.; Yu, J.; Zhu, L. Preparation and Characterization of Lignin Grafted Layered Double Hydroxides for Sustainable Service of Bitumen under Ultraviolet Light. J. Clean. Prod. 2022, 350, 131536. https://doi.org/10.1016/j.jclepro.2022.131536

[22]   Gaudenzi, E.; Cardone, F.; Lu, X.; Canestrari, F. Chemical and Rheological Analysis of Unaged and Aged Bio-Extended Binders Containing Lignin. J. Traffic Transp. Eng. (Engl. Ed.) 2023, 10, 947– 963. https://doi.org/10.1016/j.jtte.2023.05.005

[23]   Norgbey, E.; Huang, J.; Hirsch, V.; Liu, W. J.; Wang, M.; Ripke, O.; Nkrumah, P. N. Unravelling the Efficient Use of Waste Lignin as a Bitumen Modifier for Sustainable Roads. Constr. Build. https://doi.org/10.1016/j.conbuildmat.2019.116957

[24] Donchenko, M.; Grynyshyn, O.; Demchuk Yu.; Topilnytskyy P.; Turba Yu. Influence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen. Chem. Chem. Technol. 2023, 17, 681–687. https://doi.org/10.23939/chcht17.03.681

[25]   Smyrnov, V. O.; Biletskiy, V. S. Flotatsiyni metody zbahachennya korysnykh kopalyn; Skhidnyy vydavnychyy dim: Donetsk, 2010. ISBN: 978-966-317-054-1.

[26]   EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015.

[27]   EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015.

[28]   Pyshyev, S.; Miroshnichenko, D.; Chipko, T.; Donchenko, M.; Bogoyavlenska, O.; Lysenko, L.; Prysiazhnyi, Y. Use of Lignite Processing Products as Additives to Road Petroleum Bitumen. ChemEngineering 2024, 8, 27. https://doi.org/10.3390/chemengineering8020027

[29]   EN 13398:2018; Bitumen and Bituminous Binders. Determination of the Elasticity. iTeh: Newark, NJ, USA, 2019.

[30] DSTU 8787:2018; National Standard of Ukraine; Bitumen and Bituminous Binders. Determination of Adhesion with Crushed Stone. SE UkrNDNC: Kyiv, Ukraine, 2018.

[31]   EN 12607-1:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air Part 1. RTFOT method, 2014.

[32]   DSTU 9116:2021, Bitum ta bitumni viazhuchi. Bitumy dorozhni, modyfikovani polimeramy. SE UkrNDNC: Kyiv, Ukraine, 2021. P15.

[33]   DSTU 9133:2021, Bitum ta bitumni viazhuchi. Bitumy dorozhni, modyfikovani kompleksom dobavok. SE UkrNDNC: Kyiv, Ukraine, 2021. P13.