Theory and practice of obtaining composite materials based on polymer blends
Надіслано: Травень 22, 2020
Переглянуто: Серпень 15, 2020
Прийнято: Серпень 30, 2019
Azerbaijan State Oil and Industry University
Azerbaijan State Oil and Industry University
Azerbaijan State Oil and Industry University

The regularities of the thermodynamic compatibility of various industrially produced polyolefins and heterochain polymers and the possibility of obtaining composite materials based on their mixtures with significantly increased performance properties based on existing production facilities and process equipment have been identified.

The methods have been developed for the chemical and physical modification of individual polymers, their mixtures to improve the performance properties of composite materials; including the method of modification of polyethylene, which made it possible to significantly increase its thermal stability in air and in vacuum, anti-corrosion properties.

The effectiveness of the use in composite materials of the petroleum resin PPC intended to produce the products operated under conditions of increased mechanical wear, temperatures, pressures and deformations.

Developed composite materials based on mixtures of PVC, TPU, CCPE+PVC, CCPE+PU, LDPE+BR, technology of their manufacturing and processing, application of new efficient products with extreme operating conditions: injection molded tires for agricultural machines, casing stabbing baskets, nuclear magnetic logging probes, scrapers and bucket elevators, sealing rings for pneumatic radiators, indented surface of the grain cleaning machines.

[1] F. A. Amirov, K. S. Shikhaliyev, U. T. Ahmadova, ”Chemical Modification Of Oxidized Polymers”, International Journal of Development Research, vol. 08, issue 07, pp. 21902–21906, July, 2018.

[2] K. S. Shikaliyev, Monomers for the synthesis of polymers. Saarbrücken, Germany: Lambert Academic Publishing, 2017.

[3] K. S. Shikaliyev, “Obtaining an ecological pure composition based on polyvinyl chloride and benzylnaphthanate ether obtained from Baku oil”, in Proc. Int. Conf. “World Science”, Dubai, UAE, 2017, vol. 1, pp. 46–48.

[4] K. S. Shikhaliyev, ”Exploited thermoplastics based compositions”, European Science Review, issue 5–6, pp. 88–92, 2017.

[5] K. S. Shikhaliyev, N. A. Salimova, ”Thermodinamics and mutual distribution of macromolecules in the systems: chlorine-chlorocontaining polymers”, European Science Review, issue 3–4, pp. 118–119, 2017.

[6] M. Forrest, ”The Composition and Nature of Vulcanisation Fumes in the Rubber Industry – A Technical Review”, Progress in Rubber Plastics Recycling Technology, vol. 31, issue 4, pp. 219–264, 2015.

[7] Waleed A. Hussain, Abdullah A. Hussein, Jabar M. Khalaf, Ali H. Al-Mowali, Abdulwahab A. Sultan, “Dielectric Properties and a.c. Conductivity of Epoxy/Alumina Silicate NGK Composites”, Advances in Chemical Engineeing and Scince, vol. 5, issue 3, pp. 282–289, 2015.

[8] P. Sarkar, N. Modak, P. Sahoo, “Mechanical Characteristics of Aluminium Powder Filled Glass Epoxy Composites”, International Journal of Engineering and Technologies, vol. 12, pp. 1–14, 2017.

[9] K. Sai Sravani, B. Ram Gopal Reddy, Raffi Mohammed, “Effect of CaCO3 and Al2O3 Fillers on Mechanical Properties of Glass/Epoxy Composites”, International Journal for Modern Trends in Science and Technology, vol. 03, issue 06, pp. 207–213, June, 2017.

[10] V. N. Kuleznev, P. V. Surikov, “Fazovyye ravnovesiya v trekhkomponentnykh smesyakh polimerov” [“Phase equilibria in ternary polymer blends”], Vysokomolekulyarnyye soyedineniya. Seriya A [Polymer Science. Series A], vol. 54, no. 11, pp. 833–839, 2012. [in Russian].

[11] M. Mulder, Basic Principles of Membrane Technology. Dordrecht, the Netherlands: Kluwer Academic, 1996.

[12] N. A. Belov, A. P. Safronov, Y. P. Yampolskii, “Obrashchennaya gazovaya khromatografiya i termodinamika sorbtsii v polimerakh” [“Inverse-gas chromatography and the thermodynamics of sorption in polymers”], Vysokomolekulyarnyye soyedineniya. Seriya A [Polymer Science. Series A], vol. 54, no. 11, pp. 859–873, 2012. [in Russian].

[13] I M. Arcana, B. Bundjali, I. Yudistira, B. Jariah, L. Sukria, Study on Properties of Polymer Blends from Polypropylene with Polycaprolactone and Their Biodegradability, Polymer Journal, vol. 39, no. 12, pp. 1337–1344, 2007.

[14] E. A. Ermilova, A. A. Sizova, N. N. Il’icheva, D. V. Pleshakov, “Issledovaniye termodinamicheskoy sovmestimosti trekhkomponentnoy smesi nitraminov s sopolimerom metilmetakrilata i metakrilovoy kisloty” [“Investigation of thermodynamic compatibility of three components mixture of nitramine with copolymer methyl methacrylate and methacrylic acid”], Uspekhi v Khimii i Khimicheskoy Tekhnologii [Success in Chemistry and Chemical Technology], vol. 28, issue 2 (151), pp. 65–67, 2014. [in Russian].

[15] Yu. M. Zuyev, Dostizheniya nauki i tekhnologii v oblasti reziny [Advances in Rubber Science and Technology]. Moscow, Russia: Khimiia Publ., 1959. [in Russian].

[16] A. E. Portyanskiy, Yo. Abrakham, G. L. Alizade, Ya. M. Bilalov, “Issledovaniye protsessa mekhanoinitsiirovannoy modophikatsii SKEP s PVKH” [“Investigation of the process of mechanized initiation of EPDM with PVC”], Azerbaydzhanskiy khimicheskiy zhurnal [Azerbaijan Chemical Journal], no. 4, pp. 80–85, 1975. [in Russian].

[17] O. A. Serenko, G. P. Goncharuk, et al., “Vliyaniye temperaturi na deformatsionnoye povedeniye kompozita na osnove plipropilena i chastits rezini” [“Effect of temperature on the stress-strain behavior of a polypropylene-particulate rubber composite”], Vysokomolekulyarnyye soyedineniya. Seriya A [Polymer Science. Series A], vol. 49, no. 1, pp. 71–78, 2007. [in Russian].

[18] I. Ya. Derikov, I. Yu. Kutergina, et al., “Stable nonequilibrium composites based on liquid-crystalline polymers and cadmium selenide nanoparticles”, Vysokomolekulyarnyye soyedineniya. Seriya A [Polymer Science. Series A], vol. 56, no. 4, pp. 488–497, 2014. [in Russian].

[19] A. E. Zaikin, G. B. Bobrov, “Kompatibilizasiya smesey nesovmestimikh polimerov napolneniyem” [“Compatibility of mixtures of incompatible polymers by filling”], Vysokomolekulyarnyye soyedineniya. Seriya A [Polymer Science. Series A], vol. 54, no. 8, pp. 1275–1282, 2012. [in Russian].

[20] S. H. El-Sabbagh, “Compatibility study of natural rubber and ethylene-propylene-diene rubber blends”, Applied polymer science, vol. 90, no. 1, pp. 1–11, October, 2003.

[21] A. A. Askadskii, “Vliyaniye silnikh mezhmolekulyarnikh i khimicheskikh vzaimodeystviy na sovmestimost polimerov” [“The effect of strong intermolecular and chemical interactions on the compatibility of polymers”], Uspekhi khimii [Russian Chemical Reviews], 1999, vol. 68, no. 4, pp. 349–364. [in Russian].

[22] A. Amash, R. H. Schuster, T. Früh, “Effects of compatibility in rubber/polypropilene blends”, Elastomere und Kunststoffe [Elastomers and Plastics], no.6, pp. 315–320, 2001.

[23] M. O. Abou-Helal, S. H. El-Sabbagh, “Study on the compatibility of NR-EPDM blends using electrical and mechanical techniques”, Journal of Elastomers and Plastics, vol. 37, no. 4, pp. 319–346, 2005.

K. Shixaliyev, I. Abbasov, Kh. Sadig, "Theory and practice of obtaining composite materials based on polymer blends", Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 5, no. 2, pp. 1-15, 2019.