An important issue in the processes of strengthening and restoration of surfaces exposed to abrasive, abrasive-corrosive and hydroabrasive wear, using the process of self-protective flux-cored arc welding (FCAW), is to increase the productivity of hardfacing and the quality of the hardfacing metal. The literature review showed that one of the ways to increase the productivity of hardfacing and improve the quality of the hardfaced metal is to add an exothermic mixture to the core filler of flux-cored wire electrode. The effect of composition of filler core during FCAW on the fusion parameters, namely the addition of exothermic mixture (TM), the ratio of exothermic mixture components (CuO/Al), and the ratio of exothermic mixture oxidant to carbon content in the core composition (CuO/C) has been studied. It has been found that the optimum areas for the deposition rate (Gd), deposition factor (ad) and spattering factor (ψs) are observed for the following values of the core components: TM = 25…39, CuO/C = 5…6, CuO/Al = 3…4.
[1] John J. Coronado, Holman F. Caicedo, and Adolfo L. Gómez., “The effects of welding processes on abrasive wear resistance for hardfacing deposits”, Tribology International, vol. 42, no. 5, pp. 745–749, October, 2009. https://doi.org/10.1016/j.triboint.2008.10.012
[2] I. K. Pohodnja, A. M. Suptel', and V. N. Shlepakov, Svarka poroshkovoj provolokoj [Flux-cored wire arc welding]. Kiev, Ukraine: Naukova dumka Publ., 1972. [in Russian].
[3] S. V. Zharykov, A. H. Hryn, and L. V. Vasyleva, “Optymyzatsyia rezhymov naplavky samozashchytnoi poroshkovoi provolokoi s ekzotermycheskoi smesiu” [“Optimization of surfacing modes with self-shielded flux-cored wire with an exothermic mixture”]. Visnyk Donbaskoi derzhavnoi mashynobudivnoi akademii [Herald of the Donbass State Engineering Academy], vol. 38. no. 2, pp. 116–120, 2016. [in Russian].
[4] B. Trembach, A. Grin, S. Zharikov, and I. Trembach, “Investigation of powder wire with the CuO/Al exothermic mixture”, Visnyk Ternopilʹsʹkoho natsionalʹnoho tekhnichnoho universytetu [Scientific journal of the Ternopil National Technical University], vol. 92. no. 4, pp. 13–23, January, 2018. https://doi.org/10.33108/visnyk_tntu2018.04.013
[5] A. A. Erohin, Osnovy svarki plavleniem [Fundamentals of fusion welding]. Moscow, Russia: Mashinostroenie Publ., 1973. [in Russian].
[6] Ju. A. Juzvenko, G. A. Kiriljuk, and S. Ju. Krivchikov, “Model plavlenija samozashhitnoj poroshkovoj provoloki” [“Self-shielded flux cored wire melting model”], Avtomaticheskaja svarka [Automatic Welding], vol. 1. pp. 26–29, 1983. [in Russian].
[7] Ju. A. Juzvenko, and G. A. Kiriljuk, Naplavka poroshkovoj provolokoj [Flux-cored wire surfacing]. Moscow, Russia: Mashinostroenie Publ., 1973. [in Russian].
[8] V. V. Chigarev, D. A. Zarechensky, and A. G. Belik, “Peculiarities of melting of flux-cored strips with exothermic mixtures contained in their filler”, The Paton Welding Journal, no. 2, 46–48, 2007.
[9] Y. D. Park, N. Kang, S. H. Malene, and D. L. Olson, “Effect of exothermic additions on heat generation and arc process efficiency in flux-cored arc welding”, Metals and Materials International, vol. 13, no. 6, pp. 501–509, 2007. https://doi.org/10.1007/BF03027910
[10] O. M. Ioffe, O. M. Kuznecov, and V. M. Piteckij, “Vlijanie titano-termitnoj smesi, vhodjashhej v jelektrodnoe pokrytie, na povyshenie proizvoditel'nosti svarki” [“Effect of titanium-thermite mixture included in the electrode coating on increasing welding productivity”], Svarochnoe proizvodstvo, vol. 3, pp. 26–28, 1980. [in Russian].