The pressure oscillation in the inter-wall chamber of the teat cup

https://doi.org/10.23939/ujmems2021.03-04.011
Надіслано: Червень 28, 2021
Переглянуто: Серпень 30, 2021
Прийнято: Грудень 28, 2021
Автори:
1
Department of Designing and Operation of Machines

Factors influencing the vacuum gauge pressure in the inter-wall chamber of milking teat cups of a milking machine with a pneumo- and electromagnetic pulse generator with a combined collector are analyzed. The main factors of research and the limits of their variation are formed, the matrix of multifactor planned experiment is developed, and also results of experimental researches are received. According to the results of experimental studies, the regression equations in coded and real or natural values are derived, which characterize the dependence of pressure oscillation in the inter-wall chamber of milking teat cups on the pulsation frequency, milk ejection intensity and the ratio  between  strokes.  A  graphical  model  of  interpretation  of  regression  dependence  based  on experimental data is built. Student's t-test, Fisher's and Cochran’s criteria are calculated, which show the adequacy and reproducibility of the obtained model of the technological process using of the experimental pulse generator with combined collector of the milking machine. 

Abeni  F.,  Terzano  M.G.,  Speroni  M.,  Migliorati  L.,  Capelletti,  M.,  et  all,  Evaluation  of  milk  enzymes  and electrolytes, plasma metabolites, and oxidative status in twin cows milked in an automatic milking system or twice  daily  in  a  conventional  milking  parlor.  J.  Dairy  Sci.,  vol.  91,  pp.  3372–3384,  2008; https://doi.org/10.3168/jds.2008-1039 
[2]  Achkevych  O.,  Achkevych  V.,  Bratishko  V.,  Potapova  S.,  Justification  of  rational  design  parameters  of milking  machine  for  installations  with  milk  line  system,  21th International    Scientific Conference: Engineering  for  Rural  Development,  Jelgava  /  Latvia,  vol.  21,  pp.  1313–1318,  2020; https://doi.org/10.22616/ERDev.2020.19.TF329 
[3]  Ambord S.and Bruckmaier R.M., Milk flow dependent vacuum loss in high-line milking systems: Effects on milking  characteristics  and  teat  tissue  condition,  J.  Dairy  Sci,  Vol.  93,  pp.  3588–3594,  2010; 
https://doi.org/10.3168/jds.2010-3059 
[4]  Besier J., Lind O., Bruckmaier R.M., Dynamics of teat-end vacuum during machine milking: Types, causes and impacts on teat condition and udder health-A literature review. J. Appl. Anim. Res., Vol. 44, pp. 263–272, 2015., https://doi.org/10.1080/09712119.2015.1031780 
[5]  Besier  J.  and  Bruckmaier  R.M.,  Vacuum  levels  and  milk-flow-dependent  vacuum  drops  affect  machine milking  performance  and  teat  condition  in  dairy  cows,  J.  Dairy  Sci.,  Vol.  99,  pp.  3096–3102,  2016; https://doi.org/10.3168/jds.2015-10340  
[6]  Davies M.A., Maltz E., Reinemann D.J., Considerations of teat morphology and milking characteristics for robotic milking conditions, Proceedings of the International Symposium Robotic Milking,  pp.  56-57, Lelystad / The Netherlands, 2000. 
[7]  De Koning C.J.A.M., Automatic Milking - Common Practice on Dairy Farms. Proceedings of the 1st First North American Conference on Precision Dairy Management. 2-5 March, pp. 52-67, Toronto / Canada, 2010. 
[8]  Dmytriv V. T., Dmytriv I. V., Horodetskyy I. M. et all, Adaptive cyber-physical system of the milk production process,  INMATEH  -  Agricultural  Engineering,  Vol.  61,  No.  2,  pp.  199  -  208,  Bucharest  / Romania. https://doi: 10.35633/inmateh-61-22 , 2020. 
[9]  Dmytriv V. T., Dmytriv I. V. and Yatsunskyi P. P., Experimental pulse generator combined with the milking machine  collector,  INMATEH  -  Agricultural  Engineering,  vol.  59(3),  pp.  219-226.,  2019,  https://doi: 10.35633/INMATEH-59-24 
[10]  Dmytriv V., Dmytriv I., Horodetskyy I. and Dmytriv T., Analytical dynamic model of coefficient of friction of air pipeline under pressure, Diagnostyka, Vol. 20(4), pp. 89–94., 2019. https://doi:10.29354/diag/114334 
[11]  Dmytriv V.T., Dmytriv I.V., Lavryk Y.M. et.al, Study of the pressure regulator work with a spring-damper system applied to milking machine, INMATEH - Agricultural Engineering, 2017., Vol. 52, No. 2, pp. 61 - 67, Bucharest / Romania. 
[12]  Dmytriv V., Dmytriv I. and Dmytriv T., Recearch in thermoanemometric measuring device of pulse flow of two-phase  medium,  17th   International  Scientific  Conference:  Engineering  for  Rural  Development,Jelgava  / Latvia, 2018., vol. 17, pp. 894-904. https://doi:10.22616/ERDev2018.17.N200 
[13]  Enokidani M., Kawai K., Shinozuka Y., Watanabe A., Milking performance evaluation and factors affecting milking claw vacuum levels with flow simulator, Anim. Sci. J., 2016., vol. 88,pp. 1134–1140 
[14]  Enokidani  M.,  Kuruhara  K.,  Kawai  K.,  Analysis  of  factors  affecting  milking  claw  vacuum  levels  using  a simulated milking device, Anim. Sci. J., 2016., vol. 87, pp. 848–854 
[15]  Ferneborg S. and Svennersten-Sjaunja K., The effect of pulsation ratio on teat condition,  milk somatic cell count and productivity in dairy cows in automatic milking, Journal of Dairy Research, 2015.,vol. 82, No. 4, pp. 453-459. https://doi:10.1017/S0022029915000515 
[16]  Gleeson D. E., O’Callaghan E. J., Rath M. V., Effect of liner design, pulsator setting, and vacuum level on bovine  teat  tissue  changes  and  milking  characteristics  as  measured  by  ultrasonography, Ir. Vet.  J., 2004., vol. 57, No. 289., https://doi.org/10.1186/2046-0481-57-5-289 
[17]  Golisz E., Kupczyk A., Majkowska M., Trajer J., Simulation Tests of a Cow Milking Machine - Analysis of Design Parameters, Processes, 2021., vol. 9, No. 8: 1358. https://www.mdpi.com/2227-9717/9/8/1358 
[18]  Juszka  H.,  Lis  S.,  Tomasik  M.,  The  concept  of  a  two-chamber  autonomous  claw  of  the  milking unit,Agricultural Engineering, 2011., vol. 8, No. 133, pp. 161-165, Krakow / Poland. 
[19]  Juszka H., Tomasik M., Lis S., et all, Collector of an independent milking machine, Agricultural Engineering, 2011., vol. 4, No. 129, pp. 93-98, Poznań / Poland. 
[20]  Lisowski A. Influence of claw capacity and diameter of milk tubes on vacuum in the under-teat chamber and the  collector  (Wpływ  pojemności  kolektora  i  średnicy  przewodów  mlecznych  na podciśnienie w  komorze podstrzykowej i kolektorze), Przegląd Techniki Rolniczej i Leśnej, Vol. 3, pp.12–13, Poznan / Poland. 
[21]  Mein A. G., Reinemann J. D., Making the most of machine-on time: what happens when  the cups are on ? 2007.,  Date  of  call:  16.01.2019;  [Electronic  resource].  Mode  of  access: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.394.2868 
[22]  O’Callaghan  E.J.,  Gleeson  D.E.,  Evaluation  of  Milking  Systems  in  Terms  of  Mastitis  Risk,  Teat  Tissue Reactions  &  Milking  Performance,  End  of  Project  Reports,  Teagasc.  2000.,  Available  online: https://t-stor.teagasc.ie/handle/11019/1403 (accessed on 20 September 2021). 
[23]  Pařilová M., Ježková A., Stádník L., Štolc L., Effect of milking vacuum and overmilking on selected milking characteristics, Cattle Res., 2010., vol. 3, pp. 35–42. 
[24]  Pastell M., Takko H., Grohn H., Hautala M., Poikalainen V., et all, Assessing Cows’ Welfare: weighing the Cow in a Milking Robot, Biosystems Engineering, 2006., vol. 93, pp. 81–87. 
[25]  Pawlak T., Szlachta J., Luberański  A., The analysis of the effect of changing  the  volume of the  under-teat chamber, rubber elasticity and pulsation type on the size of the return flow in a short milk tube. Electron. J.  Pol.  Agric.  Univ.,  2005.,  vol.  8,  No.  42.  Available  online:  http://www.ejpau.media.pl/volume8/issue4/art-42.html (accessed on 20 September 2021) . 
[26]  Pazzona A., Murgia L., Zanini L., et all, Dry tests of vacuum stability in milking machines with conventional regulators and adjustable speed vacuum pump controllers, ASAE Annual International Meeting, 27- 30 July, 2003., Las Vegas, Nevada / USA. https://doi:10.13031/2013.14992  
[27]  Penry J.F., Leonardi S., Upton J., Thompson P.D., Reinemann D.J., Assessing liner performance  using on-farm milk meters,Journal of Dairy Science, 2016., vol. 99, pp, 6609–6618; https://doi.org/10.3168/jds.2015-10310 
[28]  Penry J.F., Upton J., Mein G.A., Rasmussen M.D., Ohnstad I., Thompson P.D., Reinemann D.J., Estimating teat canal cross-sectional area to determine the effects of teat-end and mouthpiece chamber vacuum on teat congestion, J. Dairy Sci., 2017., vol. 100, pp. 821–827; https://doi.org/10.3168/jds.2016-11533 
[29]  Reinemann  D.  J.,  Schuring  N.,  Bade  R.  D.,  Methods  for  Measuring  and  Interpreting  Milking Vacuum,Proceedings of the Sixth International ASABE Dairy Housing Conference, Minneapolis, Minnesota / USA, 2007. 
[30]  Stauffer C., Feierabend M., Bruckmaier R.M., Different vacuum levels, vacuum reduction during low  milk flow, and different cluster detachment levels affect milking performance and teat condition in dairy cows, J. Dairy Sci., 2020., vol. 103, pp. 9250–9260; https://doi.org/10.3168/jds.2020-18677. 
[31]  SzlachtaJ., Krzyś A., LuberańskiA.,  Modeling the influence of pressure parameters on the return flows in the short milk tube of the milking unit (Modelowanie wpływu parametrów ciśnieniowych na przepływy zwrotne w krótkim przewodzie mlecznym aparatuu dojowego), Inżynieria Rolnicza, 2000., vol. 2, pp. 165–173, Krakow / Poland;  
[32]  Thomas  C.V.,  Bray  D.  R.,  Delorenzo  M.A.,  Evaluation  of  50/50  and  70/30  pulsation  ratios  in  a    large commercial  dairy  herd,Journal  of  Dairy Science,  1993.,  vol.  76,  pp.1298–1304; doi.org/10.3168/jds.S0022-0302(93)77460-3. 
[33]  Wieland M., Nydam D.V., Virkler P.D., A longitudinal field study investigating the association between teat-end  shape  and  two  minute  milk  yield,  milking  unit-on  time,  and  time  in  low  flow  rate, Livest.  Sci.,  2017., vol. 205, pp. 88–97., https://doi.org/10.1016/j.livsci.2017.09.011