Modeling of internal diffusion mass transfer during filtration drying of capillary-porous material

2020;
: pp. 22–28
https://doi.org/10.23939/mmc2020.01.022
Received: February 06, 2019
Revised: November 18, 2019
Accepted: November 19, 2019
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University
6
Lviv Polytechnic National University

The article presents the results of theoretical and experimental studies on the determination of the coefficients of internal diffusion of moisture from capillary-porous materials of plant origin during filtration drying, in particular, beet pulp, a by-product of sugar production.  A model based on the solution of the internal diffusion differential equation with the corresponding initial and boundary conditions were used to find the internal diffusion coefficient. 

It is established that the process of the beet pulp drying occurs in the second period, and the limiting stage is the intra-diffusion mass transfer.

  1. Burdo O. G., Tersiev S. G., Yarovoy I. I., Borshch A. A.  Raw material dewatering electromagnetic technologies.  Problems of the regional energetics. 1 (18), 36–41 (2012), (in Russian).
  2. Atamanyuk V., Huzova I., Gnativ Z.  Intensification of Drying Process During Activated Carbon Regeneration.  Chemistry & Chemical Technology. 12 (2), 263–271 (2018).
  3. Barna I., Gumnytskyi Y., Atamanyuk V.  Intradiffusion Mass Transfer during Drying of Slag Gravel Raw Granule.  Chemistry & Chemical Technology. 7 (4), 461–465 (2013).
  4. Matkivska I., Gumnytskyi Y., Atamanyuk V.  Kinetics of Diffusion Mass Transfer during Filtration Drying of Grain Materials.  Chemistry & Chemical Technology. 8 (3), 359–363 (2014).
  5. Frolov V. F.  Makrokineticheskij analiz sushki dispersnyh materialov.  Sovremennye jenergosberegajushhie teplovye tehnologii (sushka i termovlazhnostnaja obrabotka materialov), I Mezhdunar. nauchno-prakticheskaja konferencija, 25–31 may 2002, Moskva, 2, 7–17 (2002), (in Russian).
  6. Fadel J. G., DePeters E. J., Arosemena A.  Composition and digestibility of beet pulp with and without molasses and dried using three methods.  Animal Feed Science and Technology. 86 (1–2), 121–129 (2006).
  7. Slavjanskij A. A.  Promyshlennoe proizvodstvo sahara.  Moskva, MGUTU imeni K. G. Razumovskogo (2015), (in Russian).
  8. Aksu Z., Isoglu I. A.  Use of dried sugar beet pulp for binary biosorption of Gemazol Turquoise Blue-G reactive dye and copper(II) ions: Equilibrium modeling.  Chemical Engineering Journal. 127 (1–3), 177–188 (2007).
  9. Reddad Z., Gérente C., Andrès Y., Ralet M.-C., Thibault J.-F., Cloirec P. L.  Ni(II) and Cu(II) binding properties of native and modified sugar beet pulp.  Carbohydrate Polymers. 49 (1), 23–31 (2002).
  10. Castro L., Blázquez M. L., Muñoz J. A., González F., García–Balboa C., Ballester A.  Biosynthesis of gold nanowires using sugar beet pulp.  Process Biochemistry. 46 (5), 1076–1082  (2004).
  11. Atamaniuk V. M., Humnytskyi Ya. M.  Naukovi osnovy filtratsiinoho sushinnia dyspersnykh materialiv.  Lviv,  Lviv Polytechnic National University (2013), (in Ukrainian).
  12. Atamaniuk V. M.  Hidrodynamika i teplomasoobmin pid chas filtratsiinoho sushinnia dyspersnykh materialiv.  DSc Thesis. Lviv (2007), (in Ukrainian).
  13. Mosiuk M. I.  Hidrodynamika i teplo masoobmin pid chas sushinnia podribnenoi «enerhetychnoi» verby v statsionarnomu shari.  Phd Thesis. Lviv (2012), (in Ukrainian).
  14. Barna I. R.  Hidrodynamika i teplomasoobmin pid chas filtratsiinoho sushinnia syrovynnykh materialiv shlakovoho hraviiu.  Phd Thesis. Lviv (2013), (in Ukrainian).
  15. Aerov M. E., Todes O. M.  Gidravlicheskie i teplovye osnovy raboty apparatov so stacionarnym i kipjashhim zernistym sloem.  Leningrad, Himija (1968), (in Russian).
  16. Atamanyuk V., Gumnitsky Ya.  Mass exchange dynamics during second filtration drying period.  Chemistry & Chemical Technology. 3 (2), 129–137 (2009).
  17. Rudobashta S. P., Nuriev N. N.  Kinetika nizkotemperaturnoj sushki ozonirovannym vozduhom.  Trudy pervoj mezhdunarodnoj nauchno-prakticheskoj konferencii "Sovremennye jenergosberegajushhie teplovye tehnologi (sushka i termovlazhnostnaja obrabotka materialov)": tr. mezhdunarod. nauch.-praktich. konf. MGAU. 4, 56–59 (2002), (in Russian).
  18. Lykov A. V.  Teorija teploprovodnosti.  Moskva, Vysshaja shkola (1967), (in Russian).
Mathematical Modeling and Computing, Vol. 7, No. 1, pp. 22–28 (2020)