LOGIC-COGNITIVE MODELS, INFORMATION AND SYSTEM TECHNOLOGIES FOR IDENTIFYING THE STRUCTURE OF HIERARCHICAL SYSTEMS TO PROVIDE SUPPORT FOR SOLUTIONS IN CRISIS AND CONFLICT SITUATIONS

2019;
: 76-90
https://doi.org/10.23939/ujit2019.01.076
Received: November 19, 2019
Accepted: November 20, 2019
1
Lviv Polytechnic National University, Department of Automated Control Systems
2
Lviv Polytechnic National University, Department of Automated Control Systems
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University, Department of Automated Control Systems

The ar­tic­le pre­sents sche­mes and mo­dels to sup­port de­ci­si­on-ma­king for the eli­mi­na­ti­on of thre­ats du­ring emer­gen­ci­es in hi­erarchi­cal systems. The construc­ti­on of sche­mes and mo­dels was ba­sed on in­for­ma­ti­on and system techno­lo­gi­es (ba­sed on the con­cept of iden­ti­fi­ca­ti­on). In mo­dern techno­lo­gi­cal pro­duc­ti­ons with a complex hi­erarchi­cal struc­tu­re, the cau­ses of an emer­gency can be: fa­ilu­res, obstac­les, mal­functi­ons (both in in­for­ma­ti­on ma­na­ge­ment struc­tu­res and in pro­duc­ti­on units, and in ca­se of techno­logy vi­ola­ti­on).

In the event of er­rors (which may be ma­de in the pro­cess of analyzing a li­mi­ting sit­ua­ti­on or emer­gency) and in­cor­rect de­ci­si­ons, the dyna­mics of the de­ve­lop­ment of events will ha­ve di­sastro­us con­seq­uen­ces. To pre­vent the de­ve­lop­ment of events un­der such a sce­na­rio, ope­ra­ti­onal and techni­cal per­son­nel sho­uld ha­ve an approp­ri­ate le­vel of syste­ma­tic know­led­ge. This al­lows staff to iden­tify the so­ur­ces of ha­zards and fac­tors, to bu­ild a cau­se-and-ef­fect re­la­ti­onships. This be­co­mes the ba­sis for the analysis of the sta­te of po­ten­ti­ally dan­ge­ro­us ob­jects (PDO) in the hi­erarchi­cal struc­tu­re of the system. This system-in­for­ma­ti­on ba­sis is ne­ces­sary for construc­ting sce­na­ri­os for the de­ve­lop­ment of events, iden­tif­ying bottle­necks and ma­king de­ci­si­ons in the con­text of eli­mi­na­ting thre­ats and emer­gency con­di­ti­ons by the ope­ra­ti­onal ma­na­ge­ment te­am. For complex struc­tu­res of techno­ge­nic systems, the prob­lem of iden­ti­fi­ca­ti­on (both dyna­mics and in­ter­con­nec­ti­ons of aggre­ga­tes) is not fully re­sol­ved. This req­ui­res the de­ve­lop­ment of new met­hods ta­king in­to ac­co­unt hu­man be­ha­vi­or.

Mo­dern pro­duc­ti­on is a complex in­teg­ra­ted hu­man-mac­hi­ne control­led system and ma­na­ge­ment stra­tegy (which are inclu­ded both in the struc­tu­re of the au­to­ma­ted control system and in the know­led­ge ba­se and pro­fes­si­onal skills of the hu­man ope­ra­tor). A cha­rac­te­ris­tic fe­atu­re of such systems is the distri­bu­ti­on of in­for­ma­ti­on lo­ad in ac­cor­dan­ce with the tar­get tasks. This req­ui­res the de­ve­lop­ment of da­ta flows of va­ri­ous in­for­ma­ti­onal sig­ni­fi­can­ce, iden­tif­ying the cha­rac­te­ris­tic signs of the system's be­ha­vi­or re­la­ti­ve to the tar­get, and for­ming so­lu­ti­ons for co­or­di­na­ting the system's mo­ve­ment in the di­rec­ti­on of the tar­get area. The­se de­ci­si­on-ma­king pro­ces­ses and pro­ce­du­res incre­ase the men­tal ten­si­on of the ope­ra­tor. This may le­ad to de­ci­si­ons to un­ne­ces­sary risk. That is, in ac­cor­dan­ce with the sit­ua­ti­on, the pri­ce of er­ror incre­ases. This is what forms the set of req­ui­re­ments for the ope­ra­tor: both to the le­vel of his in­tel­lec­tu­al re­adi­ness, and to his psychophysi­olo­gi­cal cha­rac­te­ris­tics.

[1]     Aizer­man, M. A., & Ales­ke­rov, F. T. (1990). Vybor va­ri­an­tov. Os­novy te­orii. Mos­cow: Nau­ka, 240 p. [In Rus­si­an].

[2]     Ba­nelykov, A. A. (1986). Pro­ek­ti­ro­va­nie sis­tem pri­ni­atiia res­he­nii v ener­ge­ti­ke. Mos­cow: Ener­go­ato­miz­dat, 120 p. [In Rus­si­an].

[3]     Di­den­ko, N. I., et al. (1988). Prog­rammno-tce­le­voe pla­ni­ro­va­nie issle­do­va­nii i raz­ra­bo­tok v pri­bo­rostro­enii. Le­ningrad: Mas­hi­nostro­enie, 183 p. [In Rus­si­an].

[4]     Do­do­nov, A. G., Khadzhi­nov, V. V., & Vo­los­kov, I. I. (1988). Vychis­li­telnye sis­temy dlia res­he­niia za­dach ope­ra­tiv­no-or­ga­ni­zat­ci­on­no­go up­rav­le­niia. Kyiv: Na­uk. dum­ka, 216 p. [In Rus­si­an].

[5]     Eik­seff, P. (1975). Os­novy iden­ti­fi­kat­cii sis­tem. Mos­cow: Mir, 684 p. [In Rus­si­an].

[6]     Eik­seff, P. (1983). Sov­re­mennye me­tody iden­ti­fi­kat­cii sic­tem. Mos­cow: Mir, 400 p. [In Rus­si­an].

[7]     Eme­li­anov, S. V. (Ed.). (1988). Tekhno­lo­giia sis­tem­no­go mo­de­li­ro­va­niia. Mos­cow: Mas­hi­nostro­enie, 520 p. [In Rus­si­an].

[8]     Ge­ra­si­mov, B. M., Ta­ra­sov, V. A., & To­ka­rev, I. V. (1993). Che­lo­ve­ko-mas­hinnye sis­temy pri­ni­atiia res­he­nii s ele­men­ta­mi is­kusstven­no­go in­tel­lek­ta. Kyiv: Na­uk. dum­ka, 183 p. [In Rus­si­an].

[9]     Gla­dun, V. P. (1987). Pla­ni­ro­va­nie res­he­nii. Kyiv: Nau­ka, 168 p. [In Rus­si­an].

[10]  Gryciuk, Yu. I., Dragan, Ya. P. (2016). Numerical integration of table functions to one variable using Taylor polynomial. Scientific Bulletin of UNFU, 26(3), 350–360. https://doi.org/10.15421/40260358.

[11]  Grytsiuk, Yu. I., & Leshkevych, I. F. (2017). The Problems of Definition and Analysis of Software Requirements. Scientific Bulletin of UNFU, 27(4), 148–158. https://doi.org/10.15421/40270433.

[12]  Hrytsi­uk, Yu. I., & Buchkovska, A. Yu. (2017). Vis­ua­li­za­ti­on of the Re­sults of Ex­pert Eval­ua­ti­on of Softwa­re Qua­lity Using Po­lar Di­ag­rams. Sci­en­ti­fic Bul­le­tin of UN­FU, 27(10), 137–145. https://doi.org/10.15421/40271025.

[13]  Hrytsiuk, Yu. I., & Nemova, E. A. (2018). Peculiarities of Formulation of Requirements to the Software. Scientific Bulletin of UNFU, 28(7), 135–148. https://doi.org/10.15421/40280727.

[14]  Hrytsiuk, Yu. I., & Zhabych, M. R. (2018). Risk Management of Implementation of Program Projects. Scientific Bulletin of UNFU, 28(1), 150–162. https://doi.org/10.15421/40280130.

[15]  Iva­nit­cev, V. V. (1986). Av­to­ma­ti­zat­ciia mo­de­li­ro­va­niia po­to­kovykh sis­tem. Le­ningrad: Nau­ka, 142 p. [In Rus­si­an].

[16]  Ka­bi­kin, V. E. (1977). Di­ag­nos­ti­ka ope­ra­tiv­no­go myshle­niia. Kyiv: Na­uk. dum­ka, 110 p. [In Rus­si­an].

[17]  Ka­no­vei, V. G. (1984). Ak­si­oma vybo­ra i ak­si­oma de­ter­mi­ni­ro­va­nos­ti. Mos­cow: Nau­ka, 64 p. [In Rus­si­an].

[18]  Khu­is, D. (1981). Pric­hinnyi ana­liz v sta­tis­tic­hes­kikh issle­do­va­niiakh. Mos­cow: Sta­tis­ti­ka i fi­nansy, 254 p. [In Rus­si­an].

[19]  Ki­ni, R. L., & Ra­ifa, Kh. (1981). Pri­ni­atie res­he­nii pri mno­gikh kri­te­riiakh: pred­pochte­niia i za­meshhe­niia. Mos­cow: Ra­dio i svi­az, 560 p. [In Rus­si­an].

[20]  Kol­man, R., Fal, P., & Ar­bib, M. (1971). Oc­her­ki po ma­te­ma­tic­hes­koi te­orii sis­tem. Mos­cow: Mir, 398 p. [In Rus­si­an].

[21]  Li­ametc, V. I., & Ti­as­hev, A. D. (2004). Sis­temnyi ana­liz. Khar­kiv: KhNU­RE, 448 p. [In Rus­si­an].

[22]  Li­ung, L. (1991). Iden­ti­fi­kat­ciia sis­tem. Mos­cow: Nau­ka. 432 p. [In Rus­si­an].

[23]  Lur­giia, A. F. (2002). Os­novy ne­irop­sik­ho­lo­gii. Mos­cow: Aka­de­miia, 384 p. [In Rus­si­an].

[24]  Lysa, N. K., & Si­ko­ra, L. S. (2015). In­for­mat­si­ino-ener­hetychna kontseptsiia ta ba­zo­vi mo­de­li aktyvi­zat­sii tekhno­lo­hichnykh prot­se­siv na pidsta­vi la­zer­no­ho fo­ton­no­ho zon­du­van­nia. Part 2. Mo­de­liu­van­nia ta in­for­mat­si­ini tekhno­lo­hii, 75, 132–143. [In Uk­ra­ini­an].

[25]  Ma­imi­nas, E. Z. (1989). Kom­piu­ter i za­dac­ha vybo­ra. Mos­cow: Nau­ka, 208 p. [In Rus­si­an].

[26]  Ma­ka­ro­va, I. M. (Ed.). (1992). Te­oriia vybo­ra i pri­ni­atiia res­he­nii. Mos­cow: Nau­ka, 328 p. [In Rus­si­an].

[27]  Me­sa­ro­vich, M., & Tak­ha­ka­ra, Ia. (1978). Obshhaia te­oriia sis­tem. Ma­te­ma­tic­hes­kie os­novy. Mos­cow: Mir, 310 p. [In Rus­si­an].

[28]  Me­sa­ro­vich, M., Ma­ko, D., & Ta­kak­ha­ra, I. (1973). Te­oriia ierarkhic­hes­kikh mno­gou­rov­nevykh sis­tem. Mos­cow: Mir, 344 p. [In Rus­si­an].

[29]  Mic­hi, D. (1975). In­teg­ralnye ro­boty. Mos­cow: Mir. Vol. 2, 526 p. [In Rus­si­an].

[30]  Mir­kin, B. G. (1974). Prob­le­ma grup­po­vo­go vybo­ra. Mos­cow: Nau­ka, 256 p. [In Rus­si­an].

[31]  Pav­lov, A. A. (Ed.). (1990). Sis­temy av­to­ma­ti­zi­ro­van­no­go pla­ni­ro­va­niia i dis­petchi­ro­va­niia grup­povykh pro­iz­vodstven­nykh prot­ces­sov. Kyiv: Tekhni­ka, 198 p. [In Rus­si­an].

[32]  Pav­lov, A. A. (Ed.). (1991). Os­novy sis­tem­no­go ana­li­za i pro­ek­ti­ro­va­niia ASU. Kyiv: Vishha shk., 367 p. [In Rus­si­an].

[33]  Pav­lov, A. A. (Ed.). (1993). Konstruk­tivnye po­li­no­mi­alnye algorithmy res­he­niia in­di­vid­ualnykh za­dach iz klas­sa NP. Kyiv: Tekhni­ka, 128 p. [In Rus­si­an].

[34]  Pe­rel­mak, I. M. (1979). Ma­te­ma­tic­hes­kie me­todyv te­orii sis­tem. Mos­cow: Mir, 327 p. [In Rus­si­an].

[35]  Pe­rel­mak, I. M. (1982). Ope­ra­tiv­naia iden­ti­fi­kat­ciia obek­tov up­rav­le­niia. Mos­cow: Ener­go­ato­miz­dat, 270 p. [In Rus­si­an].

[36]  Per­voz­vanskii, A. A. (1972). Ma­te­ma­tic­hes­kie me­tody v up­rav­le­nii pro­iz­vodstvom. Mos­cow: Nau­ka, 616 p. [In Rus­si­an].

[37]  Podcha­so­va, T. P., La­go­da, A. P., & Rud­nitckii, V. F. (1989). Up­rav­le­nie v ierarkhic­hes­kikh pro­iz­vodstvennykh struk­tu­rakh. Kyiv: Na­uk. dum­ka, 184 p. [In Rus­si­an].

[38]  Pos­pe­lov, G. S. (Ed.). (1981). Prob­lemy prog­rammno-tce­le­voe pla­ni­ro­va­nie i up­rav­le­niia. Mos­cow: Nau­ka, 464 p. [In Rus­si­an].

[39]  Pos­pe­lov, G. S., & Iri­kov, V. A. (1976). Prog­rammno-tce­le­voe pla­ni­ro­va­nie i up­rav­le­nie. Mos­cow: Sov. ra­dio, 440 p. [In Rus­si­an].

[40]  Pos­pe­lov, G. S., Iri­kov, V. A., & Ku­ri­lov, A. E. (1985). Prot­ce­dury i algorithmy for­mi­ro­va­niia kompleksnykh prog­ramm. Mos­cow: Nau­ka, 424 p. [In Rus­si­an].

[41]  Pot­kov, Iu. S. (Ed.). (1976). Iden­ti­fi­kat­ciia i op­ti­mi­zat­ciia ne­li­ne­inykh stok­has­tic­hes­kikh sis­tem. Mos­cow: Ener­giia, 440 p. [In Rus­si­an].

[42]  Rez­nic­hen­ko, S. S., et al. (1991). Eko­no­mi­ko-ma­te­ma­tic­hes­kie me­tody mo­de­li­ro­va­niia v pla­ni­ro­va­nii i up­rav­le­nii gornym pro­iz­vodstvom. Mos­cow: Ned­ra, 428 p. [In Rus­si­an].

[43]  Sa­gu­nov, V. I., & Lo­ma­ki­na, L. S. (1990). Kontro­lep­ri­god­nost struk­tur­no-svi­azannykh sis­tem. Mos­cow: Ener­go­atom, 112 p. [In Rus­si­an].

[44]  Si­ko­ra, L. S. (1998). Syste­mo­lo­hiia pryi­ni­at­tia ris­hen na up­rav­lin­nia v skladnykh tekhno­lo­hichnykh struk­tu­rakh. Lviv: Ka­me­ni­ar, 453 p. [In Uk­ra­ini­an].

[45]  Si­ko­ra, L. S. (2009). Koh­nityvni mo­de­li ta lo­hi­ka ope­ratyvno­ho up­rav­lin­nia v iierarkhichnykh in­teh­ro­vanykh syste­makh v umo­vakh ryzyku. Lviv: TsSD "EB­TES", 432 p. [In Uk­ra­ini­an].

[46]  Si­ko­ra, L. S., Lysa, N. K., & Tkac­huk, R. L. (2016a). Lo­hi­ko-koh­nityvna mo­del in­for­mat­si­inoi identyfi­kat­sii prychynno-nas­lid­kovykh zvi­az­kiv pry dii aktyvnykh fak­to­riv na syste­mu. Part 1. Mo­de­liu­van­nia ta in­for­mat­si­ini tekhno­lo­hii, 76, 152–165. [In Uk­ra­ini­an].

[47]  Si­ko­ra, L. S., Lysa, N. K., & Tkac­huk, R. L. (2016b). Lo­hi­ko-koh­nityvna mo­del in­for­mat­si­inoi identyfi­kat­sii prychynno-nas­lid­kovykh zvi­az­kiv pry dii aktyvnykh fak­to­riv ryzyku na syste­mu. Part 2. Mo­de­liu­van­nia ta in­for­mat­si­ini tekhno­lo­hii, 76, 169–177. [In Uk­ra­ini­an].

[48]  Si­ko­ra, L. S., Tkac­huk, R. L., Tkac­huk, H. V., & Yakymchuk, B. L. (2012). Koh­nityvna skla­do­va ope­ratyvnoi diial­nos­ti v umo­vakh ryzyku i nec­hit­kos­ti danykh. Osobystist v ekstre­malnykh umo­vakh: Ma­ter. V-oi na­uk.-prakt. konf., (pp. 193–197), Lviv: LDU BZhD. [In Uk­ra­ini­an].

[49]  Sku­rik­hin, V. I., Kvac­hev, V. G., Valkman, Iu. R., & Iako­ven­ko, L. P. (1990). In­for­mat­ci­onnye tekhno­lo­gii v ispyta­niiakh slozhnykh obek­tov: me­tody i sredstva. Kyiv: Na­uk. dum­ka, 320 p. [In Rus­si­an].

[50]  Sytnyk, V. F. (Ed.). (1995). Systemy pidtrymky pryi­ni­at­tia ris­hen. Kyiv: Tekhni­ka, 162 p. [In Uk­ra­ini­an].

[51]  Tcygachko, V. N. (1991). Ru­ko­vo­di­te­liu o pri­ni­atii res­he­nii. Mos­cow: Fi­nansy i stat., 240 p. [In Rus­si­an].

[52]  Tkac­huk, R. L., & Si­ko­ra, L. S. (2010). Lo­hi­ko-koh­nityvni mo­de­li for­mu­van­nia up­rav­linskykh ris­hen in­teh­ro­vanymy syste­mamy v ekstre­malnykh umo­vakh: po­sibnyk. Lviv: Li­ha-Pres, 404 p. [In Uk­ra­ini­an].

[53]  Vasylen­ko, V. O. (2003). Te­oriia i praktyka roz­robky up­rav­linskykh ris­hen. Kyiv: TsUL, 236 p. [In Uk­ra­ini­an].

[54]  Vasylen­ko, V. O., & Shostka, V. T. (2003). Sytu­at­si­in­yi me­nedzhment. Kyiv: TsUL, 285 p. [In Uk­ra­ini­an].

[55]  Va­vi­lov, A. A. (Ed.). (1983). Imi­tat­ci­on­noe mo­de­li­ro­va­nie pro­iz­vodstvennykh sis­tem. Le­ningrad: Mas­hi­nostro­enie, 416 p. [In Rus­si­an].

[56]  Ver­mis­hev, Iu. Kh. (1982). Me­tody po­is­ka resh6enii pri pro­ek­ti­ro­va­nii slozhnykh tekhnic­hes­kikh sis­tem. Mos­cow: Ra­dio i svi­az, 152 p. [In Rus­si­an].

[57]  Vil­kas, E. I., & Ma­imi­nas, E. Z. (1981). Res­he­niia: te­oriia, in­for­mat­ciia, mo­de­li­ro­va­nie. Mos­cow: Ra­dio i svi­az, 328 p. [In Rus­si­an].

[58]  Za­it­cev, V. S. (1990). Sis­temnyi ana­liz ope­ra­torskoi deiatel­nos­ti. Mos­cow: Ra­dio i svi­az, 120 p. [In Rus­si­an].

[59]  Za­valyshyna, D. N. (1985). Psykho­lo­hichnyi ana­liz ope­ratyvno­ho myslen­nia. Mos­cow: Nau­ka, 220 p. [In Uk­ra­ini­an].