Collaborative Filtering Algorithms for a Job Recommendation System Built With a Microservice Architecture

2025;
: pp. 47 - 53
1
Lviv Polytechnic National University, Ukraine
2
Lviv Polytechnic National University, Ukraine

This article presents the development of a recommender system for recruiting personnel and vacancies to improve the efficiency of the hiring process. The proposed system has integrated collaborative and hybrid filtering methods to provide personalized job recommendations. Collaborative filtering model has analyzed historical data, identifying patterns by detecting connections between user information and job content. Research methodology has included literature analysis, dataset preparation, developing and training the Alternating Least Squares (ALS) model, and effectiveness evaluation of the implemented collaborative filtering algorithm by accuracy and performance metrics. Another part of the research is focused on integrating the recommendation module into an existing job and candidate search system built using microservices.

  1. Huamán, A., Rebaza, G., & Subauste, D. (2024). Hybrid Job Recommendation Model Based on Professional Profile Using Data from Job Boards and Machine Learning Libraries. Proceedings of the 18th International Multi- Conference on Society, Cybernetics  and  Informatics: IMSCI  2024, pp. 72-79. DOI:https://doi.org/10.54808/IMSCI2024.01.72.
  2. Liu, Y., Xiao, Y., Wu, Q., Miao, C., Zhang, J., Zhao, B., & Tang, H. (2020). Diversified Interactive Recommendation with Implicit Feedback. Proceedings of the AAAI Conference on Artificial Intelligence, 34(4), 4932–4939. DOI:https://doi.org/10.1609/aaai.v34i04.5931.
  3. Krauth, K., Wang, Y., & Jordan, M. (2025). Breaking Feedback Loops in Recommender Systems with Causal Inference. ACM Transactions on Recommender Systems. DOI: https://doi.org/10.1145/3728372.
  4. Jain, A., & Gupta, C. (2018). Fuzzy logic in recommender systems. Fuzzy logic augmentation of neural and optimization algorithms: Theoretical aspects and real applications, 255-273. DOI: https://doi.org/10.1007/978-3- 319-71008-2_20.
  5. Liu, D. (2018, December). A Study on Collaborative Filtering Recommendation Algorithms. In 2018 IEEE 4th International Conference on Computer and Communications (ICCC) (pp. 2256-2261). IEEE. DOI: https://doi.org/10.1109/compcomm.2018.8780979.
  6. Chornous, G., Nikolskyi, I., Wyszyński, M., Kharlamova, G., & Stolarczyk, P. (2021). A hybrid user-item-based collaborative filtering model for e-commerce recommendations. Journal of International Studies, 14(4). 157–173. DOI:https://doi.org/10.14254/2071-8330.2021/14-4/11.
  7.  Permana, K. E. (2024).  Comparison  of  User  Based  and Item Based Collaborative Filtering in Restaurant Recommendation System. Mathematical Modelling of Engineering Problems, 11(7), 1922–1928. DOI: https://doi.org/10.18280/mmep.110723.
  8.  Xu,   Y.,   Zhang,   Y.,   Zhang,   Y.,   &   Li,   H.   (2023).Optimization of intelligent recommendation of innovation and entrepreneurship projects based on collaborative filtering algorithm. Intelligent Decision  Technologies, 17(1), 1–13. DOI: https://doi.org/10.3233/idt-230313.
  9. Sitkar, S., Teslyuk, V., Yanchuk, I., Antonyuk,  D.,  & Kohut, I. (2022). The intellectual system of movies recommendations based on the collaborative filtering. Journal of Education, Health and Sport, 12(3), 115–127. DOI: https://doi.org/10.12775/jehs.2022.12.03.010.
  10. Nguyen,  L.  V.,  Vo,  Q.-T.,  &  Nguyen,  T.-H.  (2023).Adaptive KNN-Based Extended Collaborative Filtering Recommendation Services. Big Data and Cognitive Computing,             7(2),                                    106.                  DOI: https://doi.org/10.3390/bdcc7020106.
  11. Nguyen, L. V., Nguyen, T.-H., Vo, Q.-T., & Le, T. A.(2020). Cognitive Similarity-Based Collaborative Filtering Recommendation System. Applied Sciences, 10(12), 4183. DOI: https://doi.org/10.3390/app10124183.
  12. El Fazziki, A., Lachhab, A., & Mouloudi, A. (2022). Employing opposite ratings users in a new approach to collaborative filtering. Indonesian Journal of Electrical Engineering and Computer Science, 25(1), 450–459. DOI: https://doi.org/10.11591/ijeecs.v25.i1.pp450-459.
  13. Muhammad, M. (2021). Recommendation System Using User-Based Collaborative Filtering and  Spectral Clustering. In Proceedings of the 1st International Seminar on Teacher Training and Education, ISTED 2021 (pp. 516-521).   EAI.    DOI:   https://doi.org/10.4108/eai.17-7-2021.2312409.
  14. Kwieciński, R., Filipowska, A., Górecki, T., & Dubrov, V. (2023). Job recommendations: benchmarking of collaborative filtering methods for classifieds. arXiv e- prints, arXiv-2301.DOI:https://doi.org/10.48550/arXiv.2301.07946.
  15. Melnyk, K., Borysova, N., Kochuieva, Z., & Huliieva, D. (2021). Towards Designing of Recommendation System for Recruiting of Software Development Teams. Computer Modeling and Intelligent Systems, 2864, 226–237. DOI: https://doi.org/10.32782/cmis/2864-20.
  16. Hu, Y., Koren, Y., & Volinsky, C. (2008). Collaborative Filtering for Implicit Feedback Datasets. In 2008 Eighth IEEE International Conference on Data Mining (ICDM). IEEE. DOI: https://doi.org/10.1109/icdm.2008.22