Method and program model of microelectromechanical systems components synthesis based on genetic algorithm and ontology models

2013;
: pp. 105 – 108
Authors: 

Vasyliuk Ia., Teslyuk V., Denysyuk P.

Lviv Politechnic National University, Computer Aided Systems Department

In this paper the general process and the concurrent synthesis realization model of microelectromechanical systems, which is based on developed genetic algorithm, are described. As the synthesis task in the sphere of complex microsystems is very comprehensive and timeconsuming, the actuality of performance and speed issues to generate the novel system and its components constructions is still up-to-date unsolved item. The developed model facilitates and accelerates the synthesis of the new and unique microelectromechanical systems structures.

1. Теслюк В.М. Моделі інформаційних технологій синтезу мікроелектромеханічних систем: Монографія. – Львів: Вид-во ПП ”Вежа і Ко”, 2008. – 192 с. 2. Deb K. Multi-Objective Optimization Using Evolutionary Algo rithms, Wiley and Sons, Inc., New York, NY, 2001. 3. Goldberg D.E. Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1989. 4. Tamaki H., Kita H., Kobayashi S. “Multi-Objective Optimization by Genetic Algorithms: A Review”, Proc. of 1996 IEEE Int. Conf. on Evolutionary Computation ( ICEC'96), 1996 , pp. 517–5 22. 5. Coello Coello C.A. “An Updated Survey of Evolutionary Multiobjective Optimization Techniques : State of the Art and Future Trends,” 1999 Congress on Evolutionary Computation, Vol. 1, Washington, D.C., July 1999. 6. Гладков Л.А., Курейчик В.В., Курейчик В.М. Генетические алгоритмыю. – М.: Физматлит, 2006. – 320 с. 7. Lindroos V., Tilli M., Lehto A., Motook T. Silicon-OnGlass ME MS Design Handbook. Michigan, 2007. – 26 p. 8. http://en.wikipedia.org/wiki/Pareto's_law. 9. http://docs.oracle.com/javase/specs/