Deformation processes in media with fractal structure have been studied. At present, research on the construction of mathematical methods and models of interconnected deformation-relaxation and heatmass transfer processes in environments with a fractal structure is at an early stage. There are a number of unsolved problems, in particular, the problem of correct and physically meaningful setting of initial and boundary conditions for nonlocal mathematical models of nonequilibrium processes in environments with fractal structure remains unsolved.
To develop adequate mathematical models of heat and mass transfer and viscoelastic deformation in environments with fractal structure, which are characterized by the effects of memory, self-organization and spatial nonlocality, deterministic chaos and variability of rheological properties of the material, it is necessary to use non-traditional approaches. -differential operators. The presence of a fractional derivative in differential equations over time characterizes the effects of memory (eridity) or nonmarking of modeling processes. The implementation of mathematical models can be carried out by both analytical and numerical methods. In particular, in this paper the integral form of fractional-differential rheological models is obtained on the basis of using the properties of the non-integer integraldifferentiation operator and the Laplace transform method.
The obtained analytical solutions of mathematical models of deformation in viscoelastic fractal media made it possible to obtain thermodynamic functions, creep nuclei and fractal-type relaxation. Developed software to study the effect of fractional differentiation parameters on the rheological properties of viscoelastic media.
- Самко, С. Г., Килбас, А.А., Маричев, О.И. (1987). Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 688.
- Cottrill-Shepherd, K., Naber, M. (2001). Fractional differential forms. Journal of Mathematical Physics. Vol.42. No.5. 2203-2212.
- Бутковский, А. Г., Постнов, С. С., Постнова, Е. А. (2013). Дробное интегро- дифференциальное исчисление и его приложения в теории управления. Автоматика и телемеханика. N 4., 3-29.
- Post, E. U. Generalized Differentiation (1930). Trans. of Amer. Math Soc. V. 32. № 4., 723-781.
- Zavada, P. (1998). Operator of fractional derivative in the complex plane. Communications in Mathematical Physics.V.192, 261-285.
- Chen, Y., Yan Zhang (2003). Applications of Fractional Exterior Differential in The Dimension space. Appl. Math. Mech. 2003. V. 24. N 3, 216-260.
- West, B.J., Bologna, M., Grigolini, P. (2003). The Physics of Fractal Operators, Springer- Verlag,.New York, 354.
- Machado, J. Tenreiro, Kiryakova, V., Mainardi, F. (2011).Recent history of fractional calculus. Commun Nonlinear Science and Numer Simulat, V. 16, 1140-1153.
- Podlubny, I. (1999). Fractional Differential Equations. vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 340.
- Lorenzo, C. F., Hartley, T. T. (2002). Variable Order Distributed Order fractional Operators. Nonlin. Dyn. V.29, 57-98. Valerio, D., da Costa, J. S. (2011). Variable-Order Fractional Derivatives and their Numerica Aproximations. Signal Proc. V.91, 470-483.
- Sun, H., Chen, Y., Chen, W., (2009) Time Fractional Differential Equation Model with Randow Derivative Order. Proc. ASME int. Design Engin. Technical Conf. Computers and Inform. in. Engin. Conf. DETC/CIE, Paper If DETC 2009-87483 (6 pages).
- Учайкин, В. В. (2008). Метод дробных производных. Ульяновск: Издательство Артишок», 512.
- Datsko, B.Y., Gafiychuk, V.V. (2012) Different types of instabilities and complex dynamics in reaction-diffusion systems with fractional derivatives. Computational and Nonlinear Dynamics. DOI No: CND-09-1119.
- Gafiychuk, V., Datsko, B. (2010). Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems. Computers and Mathematics with Applications, 59, 1101-1107.
- Povstenko, Y. (2013). Fundamental solutions to time-fractional heat conduction equations in two joint half-lines. Cent. Eur. J. Fhys. 11(10), 1284-1294.
- Povstenko, Y., (2012). Neumanuboundary-value problems for a time-fractional diffusion - walue equation in half-plane. Computers Mathematics with Applications, Vol.64, 11, 3183-3192.
- Povstenko, Y. (2013). Fractional Heat Conduction in an Infinite Medium with a Spherical Inclusion. Entropy. Vol.15, 4122 – 4133.
- Sokolovskyy, Ya., Shymanskyi, V., Levkovych, M. (2016). Mathematical modeling of non- isotermal moisture transfer and visco-elastic deformation in the materials with fractal structure. Computer Science and Information Technologies ‘CSIT 2016’ : proc. of the 11th Intern. Sci. and Techn. Conf., 6-10 Sept. 2016. Lviv, 91-95.
- Sokolovskyy, I., Levkovych, M., Mokrytska, O. (2018). Numerical modeling and analysis of physical properties in biomaterials with fractal structure. Informatics & Data-Driven Medicine. Vol. 2255., 180-192.
- Oldham, K.B., Spanier, J. (1974). The Fractional Calculus. New York-London: Academic Press.
- Победря, Б. Е. (2000). Модели механики сплошной среды. Изв. РАН МТТ. № 3, 47-59.