Emulsion oligomerization of С9 fraction of oil refining by-products initiated by potassium persulfate

2019;
: 59-63
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

Hydrocarbon  resins (oligomers) are produced on the basis of fraction C9 of oil refining by-products. The low-temperature emulsion oligomerization can reduce the temperature and duration of the process compared to the existing technologies.

It is proposed to use emulsion oligomerization of hydrocarbon fraction C9 initiated by water-soluble initiator potassium persulfate in the presence of first type anionic emulsifier . Due to the low temperature of the process, the styrene monomers and their derivatives are introduced into the reaction. The resulting hydrocarbon resin is a styrenic co-oligomer and is characterized by a low color index.

The reaction mixture consists of: a dispersion medium - water; dispersed phase - fraction С9; first type anionic emulsifier  - E-30; water soluble initiator - potassium persulfate. The process was carried out at a temperature of - 323 K, for 3 hours. with intense mixing (Re = 10120), the volume ratio of the components [fraction C9]: [water] = [1: 2], the concentration of the emulsifier is 0.7% by weight, initiator concentration is 1.0% by weight. Tap water, distilled and water released from oxygen are used as a dispersion medium. As pH regulators, 35% aqueous solutions of hydrochloric acid and sodium hydroxide were used. In the absence of acidity regulators, the  reaction mixture pH is 2.8, with the yield of the hydrocarbon resin being 17.8% by weight. (calculated on the initial С9  fraction). The highest oligomer yield (19.9 % by weight) is achieved at a pH value of 1.0.

The possibility of synthesis of hydrocarbon resins (styrenic co-oligomer) by emulsion oligomerization  of fraction C9 hydrocarbons was established. It has been determined that the use of pH regulators affects the course of emulsion oligomerization. Increasing the acidity of the reaction mixture positively affects the course of emulsion oligomerization and allows you to increase the yield of a hydrocarbon resin under other similar conditions. In this case, the value of the average molecular weight and the softening temperature of the oligomers does not depend on the reaction mixture pH.

1. Dumskyi, Yu. V., No, B. Y., & Butov, H. M. (1999). Khymyia y tekhnolohyia neftepolymernыkh smol.
2. Bondaletov, V. H., Bondaletova, L. Y., & Nhuen Van Tkhan. (2015). Yspolzovanye zhydkykh produktov pyrolyza uhlevodorodnoho sыria v synteze neftepolymernыkh smol. Uspekhy sovremennoho estestvoznanyia, 1(7), 1130-1133.
3. Mitina, N. Ye., Zaichenko, O. S., Bratychak, M. M., & Politikova, L. H. (2006). Vodno-dyspersiini plivkoutvoriuvachi na osnovi kopolimeriv nenasychenoi fraktsii C9 termolizu nafty. Syntez ta vlastyvosti. Khimichna promyslovist Ukrainy, 3, 14-17.
4. Mildenberg, R., Zander, M., & Collin, G. (1998). Hydrocarbon resins. New York, USA: VCH.
https://doi.org/10.1002/9783527614653
5. Orobchuk, O. M., Fuch, U. V., Subtelnyi, R. O., & Dziniak, B. O. (2014). Optymizatsiia protsesu dyspersiinoi koolihomeryzatsii fraktsii C9
shliakhom pobudovy matematychnoi modeli. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia., (787), 153-157.
6. Baihuzyn, F. A., Burmystrov, D. A., Yrdynkyn, S. A., & Fylyna, M. P. (2018). Syntez tsyklopentana yz dytsyklopentadyena vslovyiakh
nyskhodiashcheho priamotoka v katalytycheskoi zone reaktsyonno-rektyfykatsyonnoho apparata. Katalyz v promыshlennosty, 18(1), 6-12.
7. Hou, J., Zhang, D., Lin, R., Wang, S., & Sun, W. H. (2006). Copolymerization of cyclopentadiene with styrene by methylaluminoxane catalyst. Polymers for Advanced Technologies, (17), 486-490.
https://doi.org/10.1002/pat.754
8. Orobchuk, O. M., Subtelnyi, R. O., Maresh, Z. Yu., & Dziniak, B. O. (2014). Dvostadiinyi sposib initsiiovanoi koolihomeryzatsii nenasychenykh vuhlevodniv fraktsii S9. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia (787), 154-159.
9. Fuch, U. V., Dziiank, B. O., & Subtelnyi, R. O. (2015). Vyvchennia vplyvu pryrody emulhatora na protses koolihomeryzatsii v emulsii vuhlevodnevoi fraktsii. Vostochno-Evropeiskyi zhurnal peredovykh tekhnolohyi. Tekhnolohyy orhanycheskykh y neorhanycheskykh veshchestv., 4/6(65), 54--57.
10. Subtelnyi, R. O., Fuch, U. V., Revenko, L. V., & Dziniak, B. O. (2013). Koolihomeryzatsiia v emulsii vuhlevodniv fraktsii S9 z vykorystanniam persulfatu kaliiu. Visnyk Nats. un-tu Lvivska politekhnika", Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia (761), 209-2012. 
11. Kato, K., Kondo, H., & Takeda, M. (1987). The effect of pH on emulsion polymerization of styrene in the presence of an amphoteric emulsifier. Colloid and Polymer Science, 265(11), 950-956.
https://doi.org/10.1007/BF01412396
12. Fithian, P., OShaughnessy, M., Lubik, M., & Mark, S. (2017, August 1). Redox for Main Polymerization of Emulsion Polymers. PCI Magazine, 24-30.
13. Riabchykov, B. E. (2004). Sovremennыe metodы podhotovky vodы dlia promыshlennoho y bыtovoho yspolzovanyia. Moskva: DeLy