STRUCTURE FORMATION PECULIARITIES OF NICKEL-FILLED POLYVINYLPYRROLIDONE COPOLYMERS DURING POLYMERIZATION WITH SIMULTANEOUS Ni2+ REDUCTION

2020;
: 127-134
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Technical University of Kosice (Slovakia)
4
echnical University of Košice
5
Lviv Polytechnic National University

The course of the grafted polymerization of 2-hydroxyethylmethacrylate on polyvinylpyrrolidone with the formation of a reticulated copolymer with simultaneously chemical reduction of nickel ions is confirmed. The influence of the reduction process on the structural parameters of the polymeric matrix – the grafting efficiency and the content of polyvinylpyrrolidone in the copolymer, the molecular weight between crosslinks is established. The influence of the presence of polymer-monomer composition components on the particles formation of nickel filler is investigated. It has been found that the nickel ions reduction during the polymerization process promotes a uniform distribution of the formed metal particles in the polymer matrix volume.

1. Thomas, V., Namdeo, M., Murali Mohan, Y., Bajpai, S. K., & Bajpai, M. (2007). Review on Polymer, Hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. Journal of Macromolecular Science, Part A, 45, 107-119.  https://doi.org/10.1080/10601320701683470.
https://doi.org/10.1080/10601320701683470
2. Schexnailder, P., & Schmidt, G. (2009). Nanocomposite polymer hydrogels. Colloid and Polymer Science, 287, 1-11. https://doi.org/10.1007/s00396-008-1949-0.
https://doi.org/10.1007/s00396-008-1949-0
3. Spanoudaki, A., Fragiadakis, D., Vartzeli-Nikaki, K., Pissis, P.; Hernandez, J.C.R., & Pradas, M.M. (2006). Nanostructured and nanocomposite hydrogels for biomedical applications. In J. P. Blitz, V. M. Gun'ko (Ed.), Surface Chemistry in Biomedical and Environmental Science (pp. 229-240). Dordrecht: Springer. https://doi.org/10.1007/1-4020-4741-X_20.
https://doi.org/10.1007/1-4020-4741-X_20
4. Urban, G. A., & Weiss, T. (2009). Hydrogels for biosensors. In G. Gerlach, K. F. Arndt (Ed.), Hydrogel Sensors and Actuators. (pp. 197-220). Berlin: Springer. https://doi.org/10.1007/978-3-540-75645-3_6.
https://doi.org/10.1007/978-3-540-75645-3_6
5. Tan, N.P.B., Lee, C.H., & Li, P. (2016). Green synthesis of smart metal/polymer nanocomposite particles and their tuneable catalytic activities. Polymers, 8, 105-118. https://doi.org/10.3390/polym8040105.
https://doi.org/10.3390/polym8040105
6. Sahiner, N. (2013). Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Progress in Polymer Science, 38, 1329-1356.https://doi.org/10.1016/j.progpolymsci.2013.06.004.
https://doi.org/10.1016/j.progpolymsci.2013.06.004
7. Zheng, Y., & Wang, A. (2012). Ag nanoparticle-entrapped hydrogel as promising material for catalytic reduction of organic dyes. Journal of Materials Chemistry, 22, 16552-16559. doi:10.1039/c2jm32774k.
https://doi.org/10.1039/c2jm32774k
8. Hapiot, F., Menuel, S., & Monflier, E. (2013). Thermoresponsive Hydrogels in Catalysis. ACS Catalysis, 3, 1006−1010. https://pubs.acs.org/doi/abs/10.1021/cs400118c.
https://doi.org/10.1021/cs400118c
9. Sahiner, N., Ozay, H., Ozay, O., & Aktas, N. (2010). New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Applied Catalysis A: General, 385, 201-207. https://doi.org/10.1016/j.apcata.2010.07.004.
https://doi.org/10.1016/j.apcata.2010.07.004
10. Cai, H., Lu, P., & Dong, J. (2016). Robust nickel-polymer nanocomposite particles for hydrogen generation from sodium borohydride. Fuel, 166, 297-301. https://doi.org/10.1016/j.fuel.2015.11.011.
https://doi.org/10.1016/j.fuel.2015.11.011
11. Koval, Yu. B., Grytsenko, O. M., Suberlyak, O. V., & Voloshkevych, P. P. (2015). Vstanovlennya temperaturnoho rezhymu oderzhannya metalohidroheliv polivinilpirolidonu na stadiyi polimeryzatsiyi. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 812, 372-378. [in Ukrainian].
12. Suberlyak, O., Grytsenko, O., & Kochubei, V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429-434. doi: https://doi.org/10.23939/chcht09.04.429.
https://doi.org/10.23939/chcht09.04.429
13. Grytsenko, O. M., Hnatchuk N. M., & Suberlyak, O. V. (2013). Vplyv initsiyuvalʹnoyi systemy na strukturu ta vlastyvosti hidroheliv na osnovi kopolimeriv polivinilpirolidonu. Skhidno-Yevropeyskyy zhurnal peredovykh tekhnolohiy - Eastern-European Journal of Enterprise Technologies, 5/8(65), 59-63. [in Ukrainian].
14. Pokhmurska, A. V., Grytsenko, O. M., Suberlyak, O. V., & Gorbenko, N. Ye. (2019). Thermometric investigations of 2- hydroxyethylmethacrylate polymerization at the presence of olyvinylpyrrolidone with simultaneous nickel ions reduction. Naukovyy visnyk  NLTU  Ukrayiny - Scientific Bulletin of UNFU, 29(3), 99-103. [in Ukrainian]. https://doi.org/10.15421/40290321.
https://doi.org/10.15421/40290321
15. Suberlyak, O. V., Skorokhoda, V. Y, & Tkhir, I. G. (1989). Sopolimery metakrilovykh efirov glikoley s PVP dlya polucheniya dializnykh membran. Zhurnal prikladnoy khimii - Journal of Applied Chemistry, 6, 1330-1333. [in Russian].
16. Wong, R., Ashton, M., & Dodou, K. (2015). Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics, 7, 305-319. https://doi.org/10.3390/pharmaceutics7030305.
https://doi.org/10.3390/pharmaceutics7030305
17. Suberlyak, O., & Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. In S. Haider, A. Haider (Ed.), Hydrogels (pp. 136-214). London: IntechOpen. DOI: 10.5772/intechopen.72082.
https://doi.org/10.5772/intechopen.72082
18. Bühler, V. (2005). Polyvinylpyrrolidone excipients for pharmaceuticals: povidone, crospovidone and copovidone. Berlin, Heidelberg: Springer. https://doi.org/10.1007/b138598
https://doi.org/10.1007/b138598
19. Khaslam, D., & Villis, G. (1971). Identifikatsiya i analiz polimerov: avtoriz. per. s angl. Moskva: Khimiya. [in Russian].
20. Semko, L. S., Kruchek, O. I., Dzyubenko, L. S., Horbyk, P. P., & Oransʹka, O. I. (2008). Peretvorennya v nanostrukturnykh poroshkakh nikelyu i nanokompozyti nikelʹ/dekstran. Nanosystemy, nanomaterialy, nanotekhnolohiyi - Nanosystems, nanomaterials, nanotechnologies, 6, 1, 137-146. [in Ukrainian].
21. Grytsenko, O. M., Skorokhoda, V. Y., & Yadushyns'kyy R. Ya. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 488, 300-303. [in Ukrainian].
22. Suberlyak, O. V.; Hrytsenko, O. M.; & Hishchak, K. Y. (2016). Influence of the  metal surface of powder filler om the structure and properties of composite materials based on the co-polymers of methacrylates with polyvinylpyrrolidone. Materials Science, 52, 155-164. https://doi.org/10.1007/s11003-016-9938-9
https://doi.org/10.1007/s11003-016-9938-9
23. Grytsenko, O. M. (2006). Doslidzhennya kompleksoutvorennya v systemi polivinilpirolidon-metakrylat-ion metalu. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 533, 295-298. [in Ukrainian].
24. Grytsenko, O. M., Suberlyak, O. V., Moravsʹkyy, V. S., & Gayduk, A. V. (2016). Doslidzhennya kinetychnykh zakonomirnostey khimichnoho osadzhennya nikelyu. Skhidno-Yevropeyskyy zhurnal peredovykh tekhnolohiy - Eastern-European Journal of Enterprise Technologies, 1/6(79), 26-31. [in Ukrainian]. https://doi.org/10.15587/1729-4061.2016.59506.
https://doi.org/10.15587/1729-4061.2016.59506