Сhemical resistance and stabilization of starch nitrate

2024;
: 27-34
1
Shostka Institute of Sumy State University
2
Sumy State University

It was studied the Processes of ensuring chemical stability (stabilization) of starch nitrate obtained by nitration of starch by two ways: nitric acid and nitric-sulfuric acid mixture. It has been confirmed that, in the first case, starch nitrate has much higher stability due to the absence of low-stable sulfuric acid esters. It is shown that to ensure it in this case, 10 minutes of washing of starch nitrate in  0,19 m3/kg of hot water (95°С) is sufficient. It was established that in the case of nitration with nitric acid, an increase in the nitrogen content in starch nitrate, which characterizes the amount of nitroester bonds in it, leads to a decrease of the temperature atthe beginning of active decomposition, whichapproaches 168°C for the maximum nitrogen content (14,14%). This temperature is proposed as an indicator for evaluation of starch nitrate chemical resistance.The obtained data are necessary for the development of starch nitrate production technology.

1. Sahnoun, N., Abdelaziz, A., Tarchoun, A. F., Boukeciat, H., Mezroua, A., & Trache, D. (2022). Nitrostarch as a promising insensitive energetic biopolymer: Synthesis, characterization, and thermal decomposition kinetics. Industrial Crops and Products, 189, 115774. https://doi.org/10.1016/j.indcrop.2022.115774
https://doi.org/10.1016/j.indcrop.2022.115774
2. Sahnoun, N., Abdelaziz, A., Trache, D., Tarchoun, A. F., Bessa, W., Mahdjoub, A. S., & Thakur, S. (2023). Unrevealing the role of the sulfonitric media composition on the design and properties of potato starch-based nitrogen-rich biopolymer. Industrial Crops and Products, 205, 117536. https://doi.org/10.1016/j.indcrop.2023.117536
https://doi.org/10.1016/j.indcrop.2023.117536
3. TM 9-1300-214. (1984). Military Explosives (pp. 1-355). Washington: Headquarters Department of the Army.
4. Gańczyk-Specjalska, K. (2019). Conventional and alternative nitrocellulose stabilisers used in gun propellants. Materiały Wysokoenergetyczne/ High Energy Materials, 11 (2), 73-82.https://doi.org/ 10.22211/matwys/0175
https://doi.org/10.22211/matwys/0175
5. Liu, J. (2019). Nitrate esters chemistry and technology (pp. 1-683). Singapore: Springer.https://doi.org/10.1007/978-981-13-6647-5
https://doi.org/10.1007/978-981-13-6647-5
6. Tian, R., Li, K., Lin, Y., Lu, C., & Duan, X. (2023). Characterization techniques of polymer aging: From beginning to end. Chemical Reviews, 123(6), 3007-3088.https://doi.org/10.1021/acs.chemrev.2c00750
https://doi.org/10.1021/acs.chemrev.2c00750
7. Caesar, G. V. (1958). Starch nitrate. Advances in Carbohydrate Chemistry, 13, 331-345.https://doi.org/10.1016/S0096-5332(08)60360-4
https://doi.org/10.1016/S0096-5332(08)60360-4
8. Zimmerman, W., Sieper, G. A., Reinhardt, L.(1961). U.S. Patent № 2,995,549.
9. Lukashov, V. K., Tishchenko, S. D., Shevtsova, T. N., & Sereda, V. I. (2022). Kinetics of starch nitration process with nitric acid. Journal of Chemistry and Technologies, 30 (3), 451-458. https://doi.org/10.15421/jchemtech.v30i3.262889
https://doi.org/10.15421/jchemtech.v30i3.262889
10. Lukashov, V. K., Tishchenko, S. D., Shevtsova, T. N., & Sereda, V. I. (2022). Patterns of the process of starch nitration with nitric acid.Voprosy Khimii i Khimicheskoi Tekhnologii, (1), 66-72. https://doi.org/10.32434/0321-4095-2023-146-1-66-72
https://doi.org/10.32434/0321-4095-2023-146-1-66-72
11. Lukashov V. K., Sereda V. I., Tishchenko S. D. (2019). Technological aspects of nitration of starch with nitrogen-sulfur acid mixture. Journal of Chemistry and Technologies. 27 (2), 169-178. https://doi.org/10.15421/081918
https://doi.org/10.15421/081918
12. Wei, R., Huang, S., Wang, Z., Wang, X., Ding, C., Yuen, R., & Wang, J. (2019). Thermal behavior of nitrocellulose with different aging periods. Journal of Thermal Analysis and Calorimetry, 136, 651-660.https://doi.org/10.1007/s10973-018-7653-5
https://doi.org/10.1007/s10973-018-7653-5
13. Akhavan, J. (2022). The Chemistry of Explosives 4E. Royal Society of Chemistry.
https://doi.org/10.1039/9781839168802
14. Pourmortazavi, S. M., Hosseini, S. G., Rahimi-Nasrabadi, M., Hajimirsadeghi, S. S., & Momenian, H. (2009). Effect of nitrate content on thermal decomposition of nitrocellulose. Journal of hazardous materials, 162(2-3), 1141-1144.https://doi.org/10.1016/j.jhazmat.2008.05.161
https://doi.org/10.1016/j.jhazmat.2008.05.161
15. Vogelsanger, B. (2004). Chemical stability, compatibility and shelf life of explosives. Chimia, 58(6), 401-401.https://doi.org/10.2533/000942904777677740
https://doi.org/10.2533/000942904777677740
16. Liu, H. L. (2003). Waste minimization at a nitrocellulose manufacturing facility. International journal of environmental studies, 60(4), 353-361. https://doi.org/10.1080/00207230304725
https://doi.org/10.1080/00207230304725