The sorption of copper ions from a solution of copper(II) sulfate by the native form of natural clinoptilolite under mechanical stirring and under the action of ultrasonic radiation of different power and under different modes of process implementation (continuous and cyclic) was investigated. Based on the obtained results, it was concluded that ultrasonic vibrations significantly intensify the diffusion processes in the studied system. Carrying out the process in the cyclic mode "US treatment - exposure without US" makes it possible to achieve a greater sorption capacity of clinoptilolite due to its more complete degassing.
1. Gopal, K., Srivastava, S.B., Shukla, S., Bersillon, J.L. (2004). Contaminants in drinking water and its mitigation using suitable adsorbents: an overview. J Environ Biol. 25(4):469-75.
2. Kallo, D. (2001), Applications of Natural Zeolites in Water and Wastewater Treatment. Reviews in Mineralogy and Geochemistry. 45 (1): 519–550. https://doi.org/10.2138/rmg.2001.45.15
3. Margeta, K., Zabukovec, N., Šiljeg, V., Farkas, A. (2013), Natural Zeolites in Water Treatment – How Effective is Their Use. Water Treatment. 16 January. DOI: 10.5772/50738
4. De Velasco-Maldonado, P.S., Hernández-Montoya, V., Montes-Morán, M., Vázquez, N.A-R., Pérez-Cruz, M. A. (2018), Surface modification of a natural zeolite by treatment with cold oxygen plasma: Characterization and application in water treatment. Applied Surface Science. 434, 1193-1199. https://doi.org/10.1016/j.apsusc.2017.11.023
5. Jiménez-Cedillo, M.J.; Olguín, M.T.; Fall, C. Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron–manganese-modified clinoptilolite-rich tuffs. J. Hazard. Mater. 2009, 163, 939–945.
DOI: 10.1016/j.jhazmat.2008.07.049
6 Maria K Doula, M. R. (2009). Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Res. 43, 15,: 3659-72.
doi: 10.1016/j.watres.2009.05.037.
7. Znak, Z., Zin, O., Mashtaler, A., Korniy, S., Sukhatskiy, Yu., Gogate, P.R., Mnykh, R., Thanekar, P. (2021), Improved modification of clinoptilolite with silver using ultrasonic radiation. // Ultrasonics Sonochemistry. 73, 105496 https://doi.org/10.1016/j.ultsonch.2021.105496
8. Reeve, P.J., Fallowfield, H.J. (2018). Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms. J. Environ. Manage. 1:205:253-261. doi: 10.1016/j.jenvman.2017.09.077.
9. Cieśla, J., Franus, W., Franus, M., Kedziora, K., Gluszczyk, J., Szerement, J., Jozefaciuk, G. (2019).
Environmental-Friendly Modifications of Zeolite to Increase Its Sorption and Anion Exchange Properties, Physicochemical Studies of the Modified Materials. Materials (Basel). 30;12(19):3213. doi: 10.3390/ma12193213.
10. Strejcová, K., Tišler, Z., Svobodová, E., Velvarská, R. (2020). Characterization of Modified Natural Minerals and Rocks for Possible Adsorption and Catalytic Use. Molecules. 25(21):4989. DOI: 10.3390/molecules25214989
11. Straioto, Н., Viotti , P. V., Amado de Moura , A., Diório, A., Scaliante, M.H.N.O., Moreira, W. M., Vieira, M.F., Bergamasco, R.(2023). Modification of natural zeolite clinoptilolite and ITS application in the adsorption of herbicides. Environ Technol. 44(26):3949-3964. doi: 10.1080/09593330.2022.2077134.
12. Bansiwal, A.K., Rayalu, S.S., Labhasetwar, N.K., Juwarkar, A.A., Devotta, S. (2006). Surfactant-modified zeolite as a slow release fertilizer for phosphorus. J . Agric. Food Chem. 28;54(13):4773-9. doi: 10.1021/jf060034b.
13. Zenovii Znak, Viktoria Kochubei. (2023, )Influence of Natural Clinoptilolite Modification with Ions and Zero-Valent Silver on its Sorption Capacity. Chemistry & Chemical Technology. 17, 3, 646–654.
https://doi.org/10.23939/chcht17.03.646
14. Montallana, A., C. Cruz, M. Vasquez Jr. (2018). Antibacterial activity of copper-loaded plasma-treated natural zeolites. Plasma Med. 8: 1-10. DOI: 10.1615/PlasmaMed.2018023987
15. Naderi, К., Babadagli, Т. (2010). Influence of intensity and frequency of ultrasonic waves on capillary interaction and oil recovery from different rock types. Ultrasonics Sonochemistry. 17, 3, 500-508.