The kinetic characteristics of the reaction of nickel precipitation by hypophosphites in the volume of the solution were studied, depending on the pH of the medium, temperature, oxidant content, nature and concentration of the activator, and the presence of a water-soluble polymer –polyvinylpyrrolidone (PVP). It was found that the presence of PVP in the solution affects the duration of the induction period and the rate of the reduction reaction, and the nature of the effect of PVP significantly depends on the pH of the medium. It has been proven that the use of previously obtained nickel hydrosols as a reduction activator makes it possible to significantly reduce the duration of the induction period of the reduction reaction at low temperatures.
1. Ahmadian, Z., Kazeminava, F., Afrouz, M., Abbaszadeh, M., Mehr, N.T., Shiran, J.A., Gouda, C., Adeli, M. & Kafil, H.S. (2023). A review on the impacts of metal/metal nanoparticles on characteristics of hydrogels: Special focus on carbohydrate polymers. International Journal of Biological Macromolecules, 253, 12653. https://doi.org/10.1016/j.ijbiomac.2023.126535.
2. Tringides, C.M., Boulingre, M., & Mooney, D. J. (2024). Metal-based porous hydrogels for highly conductive biomaterial scaffolds. Oxford open materials science, 3(1), itad002. doi: 10.1093/oxfmat/itad002.
3. Biondi, M., Borzacchiello, A., Mayol, L., & Ambrosio, L. (2015). Nanoparticle-integrated hydrogels as multifunctional composite materials for biomedical applications. Gels, 1(2), 162-178. doi: 10.3390/gels1020162
4. Grytsenko, O., Dulebova, L., Spišák, E., & Pukach, P. (2023). Metal-filled polyvinylpyrrolidone copolymers: Promising platforms for creating sensors. Polymers, 15, 2259.
https://doi.org/10.3390/polym15102259.
5. Grytsenko, O., Dulebova, L., Suberlyak, O., Skorokhoda, V., Spišák, E., & Gajdos, I. (2020). Features of structure and properties of pHEMA-gr-PVP block copolymers, obtained in the presence of Fe2+. Materials, 13, 4580. https://doi.org/10.3390/ma13204580.
6. Yavorsʹkyy, V. T., Kuntyy, O. I., & Khoma, O. I. (2000). Elektrokhimichne napylennya metalevykh, konversiynykh ta kompozytsiynykh pokryttiv. Lʹviv: Lʹvivsʹka politekhnika.
7. Thoniyot, P., Tan, M. J., Karim, A. A., Young, D. J., Loh, D. J. (2015). Nanoparticle-hydrogel composites: concept, design and applications of these promising, multi-functional materials. Advanced Science, 2(1-2), 1400010. https://doi.org/10.1002/advs.201400010
8. Nanocomposites new trends and developments. F. Ebrahimi. Eds.; IntechOpen: London, UK, 2012. Р.516. doi10.5772/3389.
9. Le Droumaguet, B., Poupart, R., Guerrouache, M., Carbonnier, B., & Grande, D. (2022). Metallic nanoparticles adsorbed at the pore surface of polymers with various porous morphologies: toward hybrid materials meant for heterogeneous supported. Catalysis. Polymers, 14(21), 4706. https://doi.org/10.3390/polym14214706
10. Grytsenko, O. M., Dulebova, L., Baran, N. M., Berezhnyy, B. V., & Voloshkevych, P. P. (2022). Synthesis of polyvinylpyrolidone copolymers in the presence of two-component initiation systems. Chemistry, Technology and Application of Substances, 5(1),173–179. https://doi.org/10.23939/ctas2022.01.173
11. Minitsʹkyy, A. V., Minitsʹka, N. V., Panasyuk, O. O, & Vlasova, O. V. (2011). Utrymannya kompozytsiynykh zaliznykh poroshkiv iz pokryttyam nikelʹ-fosforu dlya vyhotovlennya mahnitnykh materialiv. Visnyk KNU imeni Mykhayla Ostrohradsʹkoho, 2(67), 79–82. Retrieved from: https://visnikkrnu.kdu.edu.ua/statti/2011-2-1(67)/79.pdf.
12. Semko, L. S., Kruchek, O. I., Dzyubenko, L. S., Horbyk, P. P, & Oransʹka O. I. (2008). Peretvorennya v nanostrukturnykh poroshkakh nikelyu i nanokompozyti nikelʹ/dekstran. Nanosystemy, nanomaterialy, nanotekhnolohiyi, 6(1), 137–146. Retrieved from:
https://www.imp.kiev.ua/nanosys/media/pdf/2008/1/nano_vol6_iss1_p0137p01...
13. Kovalʹ, YU. B., Grytsenko, O. M., Suberlyak, O. V., & Voloshkevych, P. p. (2015). Vstanovlennya temperaturnoho rezhymu zberezhennya metalodroheliv polivinilpirolidonu na stadiyi polimeryzatsiyi. Visnyk NU «Lʹvivsʹka politekhnika» «Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya», 812, 372–378.. Retrieved from: https://ena.lpnu.ua/handle/ntb/30766
14. Grytsenko, O. M., Naumenko, O. P., Suberlyak, O. V., Dulebova, L, & Berezhnyy, B. V. (2020). The technological parameters optimization of the graft copolymerization 2-hydroxyethyl methacrylate with polyvinylpyrrolidone for nickel deposition from salts. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 25-32. Retrieved from: http://vhht.dp.ua/wp-content/uploads/pdf/2020/1/Grytsenko.pdf
15. Kumar, M., Pathak, A, Singh, M., & Singla, M. L. (2010). Fabrication of Langmuir–Blodgett film from Polyvinylpyrrolidone stabilized NiCo alloy nanoparticles. Thin Solid Films, 519(4), 1445–1451. doi:10.1016/j.tsf.2010.09.028
16. Rodriguez, G., Gonzalez, G., & Silva, P. (2005). Synthesis and Characterization of Metallics Nanoparticles Stabilized with Polyvinylpyrrolidone. Microscopy and Microanalysis, 11, 1944–1945. doi:10.1017/S1431927605502691
17. Suberlyak, O., Skorokhoda, V. Hydrogels based on polyvinylpyrrolidone copolymers. In Hydrogels; Haider, S., Haider, A., Eds.; IntechOpen: London, UK, 2018; pp. 136–214, doi:10.5772/intechopen.72082.
18. Grytsenko, O. M., Skorokhoda, V. Y., Shapoval, P. Y., & Bukhvak, I. V. (2000). Doslidzhennya pryshcheplenoyi polimeryzatsiyi na PVP, initsiyovanoyi solyamy metaliv zminnoyi valentnosti. Visnyk DU «Lʹvivsʹka politekhnika» «Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya», 414, 82-85. Retrieved from: http://ena.lp.edu.ua/bitstream/ntb/8974/1/25.pdf
19. Grytsenko, O. M. (2006). Doslidzhennya kompleksoutvorennya v systemi polivinilpirolidon –metakrylat–yon metalu. Visnyk NU «Lʹvivsʹka politekhnika» «Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 553, 295-298. Retrieved from: https://ena.lpnu.ua/handle/ntb/36786