Еlectrical conductivity of solutions based on water-soluble polymers

2025;
: 92-98
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University, The John Paul II Catholic University of Lublin
4
Lviv Polytechnic National University
5
Technical University of Kosice (Slovakia)

The article presents the results of a study on the electrical conductivity of aqueous solutions of water-soluble polymers, including polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, and polyacrylic acid, as well as their binary mixtures and polymer solutions in the presence of the monomer 2-hydroxyethyl methacrylate. The primary focus is placed on the influence of the nature and concentration of the polymers, as well as the component ratios in the solutions, on their electrical conductivity. The effect of the monomer on the electrical properties of the investigated polymer solutions is also examined. The obtained results provide deeper insight into the mechanisms of complex formation in multicomponent aqueous polymer systems and can be utilized to optimize the composition of polymer systems in the development of hydrogels with specific and predictable properties. 

1. Maddumaâ Bandarage, U.S.K., Madihally, S.V. (2020). Synthetic hydrogels: Synthesis, novel trends, and applications. Journal of Applied Polymer Science, 138(19), e50376. doi:10.1002/app.50376

2. Popa, L., Violeta Ghica, M., Elena Dinu-Pîrvu, C., Tudoroiu, E.-E. (2023). Introductory chapter: Hydrogels in comprehensive overviews, recent trends on their broad applications. In Hydrogels - From tradition to innovative platforms with multiple applications; Popa, L., Violeta Ghica, M., and Dinu-Pîrvu, C.E. Eds.; IntechOpen: London, UK. doi: 10.5772/intechopen.108767

3. Kaith, B.S., Singh, A., Sharma, A.K., Sud, D. (2021). Hydrogels: Synthesis, classification, properties and potential applications – A brief review. Journal of Polymers and the Environment29, 3827–3841. https://doi.org/10.1007/s10924-021-02184-5

4. Vigata, M., Meinert, C., Hutmacher, D.W., Bock, N. (2020). Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics12, 1188. https://doi.org/10.3390/pharmaceutics12121188

5. Chen, Q., He, Y., Li, Q., Yang, K., Sun, L., Xu, H., Wang, R. (2023). Intelligent design and medical applications of antimicrobial hydrogels, Colloid and Interface Science Communications, 53, 100696/ https://doi.org/10.1016/j.colcom.2023.100696.

6. Li, X., Xu, M., Geng, Z., Liu, Y. (2023). Functional hydrogels for the repair and regeneration of tissue defects. Frontiers in Bioengineering and Biotechnology, 11, 1190171. doi: 10.3389/fbioe.2023.1190171 

7. Sobczak-Kupiec, A., Kudłacik-Kramarczyk, S., Drabczyk, A., Cylka, K., Tyliszczak, B. (2023). Studies on PVP-based hydrogel polymers as dressing materials with prolonged anticancer drug delivery function. Materials, 16, 2468. https://doi.org/10.3390/ma16062468

8. Suberlyak, O., & Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. Haider & A. Haider (Eds.), Hydrogels (pp. 136-214). London, UK: IntechOpen. doi:10.5772/intechopen.72082.

9. Grytsenko, O., Dulebova, L., Suberlyak, O., Skorokhoda, V., Spišák, E., Gajdos, I. (2020). Features of structure and properties of pHEMA-gr-PVP block copolymers, obtained in the presence of Fe2+. Materials, 13(20), 4580-4594. https://doi.org/10.3390/ma13204580

10. Suberlyak, O., Grytsenko, O., Kochubei, V. (2015). The role of FeSO4 in the obtaining of polyvinylpyrrolidone copolymers. Chemistry & Chemical Technology, 9, 429-434. doi: https://doi.org/10.23939/chcht09.04.429.

11. Suberlyak, O. V., Skorokhoda, V. Y., Grytsenko O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilʹnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy i khymycheskoy tekhnolohyy, 1, 236-238

12. Grytsenko, O. M., Skorokhoda, V. Y., Shapoval, P. Y., & Bukhvak, I. V. (2000). Doslidzhennya pryshcheplenoyi polimeryzatsiyi na PVP, initsiyovanoyi solyamy metaliv zminnoyi valentnosti. Visnyk Derzhavnoho univesytetu «Lvivska politekhnika», 414, 82-85. Retrieved from: http://ena.lp.edu.ua/bitstream/ntb/8974/1/25.pdf

13. Grytsenko, O. M., Skorokhoda, V. Y., Yadushynsʹkyy, R. Y. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalʹnoho universytetu «Lvivska politekhnika», 488, 300-303. Retrieved from: http://ena.lp.edu.ua/bitstream/ntb/12009/1/45.pdf

14. Suberlyak, O., Skorokhoda, V., Grytsenko, O. (2004) Complex PVP-Men+ – active сatalyst of vinyl monomers polymerization. In: Materiały Polimerowe i ich Przetwórstwo. Częstohowa: Wydawnictwo Politechniki Częstohowskiej, 140-145.

15. Grytsenko, O. M., Havlo, I. I., Skorokhoda, V. Y., Suberlyak O. V. (2001). Doslidzhennya polimeryzatsiyi PVP-(met)akrylatnykh kompozytsiy, initsiyovanoyi Fen+. Visnyk Natsionalʹnoho universytetu «Lvivska politekhnika», 426, 68-70. Retrieved from: https://ena.lpnu.ua/bitstream/ntb/37815/1/22_67-69.pdf

16. Grytsenko, O. M. (2006). Doslidzhennya kompleksoutvorennya v systemi polivinilpirolidon–metakrylat–yon metalu. Visnyk Natsionalʹnoho universytetu «Lvivska politekhnika», 553, 295-298. Retrieved from:   https://ena.lpnu.ua/handle/ntb/36786