Modeling the spatial distribution of gravity anomalies requires accounting for numerous factors that influence the accuracy of results. The primary factors include the interpolation methods used to construct regular grids of gravity anomalies, as well as the distribution and number of observation points. This study compares the accuracy of various interpolation methods for gravity anomalies based on the WGM2012 model. The analysis utilized gravity anomaly data obtained from 200 GNSS stations located in Ukraine and 355 test points of a hypothetical gravimetric network. The research aimed to evaluate the accuracy of interpolation methods such as Inverse Distance to a Power, Kriging, Minimum Curvature, Moving Average, Nearest Neighbor, Polynomial Regression, and Radial Basis Function in tasks of modeling the spatial distribution of anomalies using data from the WGM2012 model. The analysis was performed based on calculated differences between interpolated and original values, supported by graphical and statistical data. The results allowed for the classification of interpolation methods by accuracy: 1) High accuracy with uniform value distribution; 2) Moderate accuracy with a balanced distribution; 3) Low accuracy with large amplitude variations. The study demonstrated that a well-founded selection of an interpolation method can significantly enhance the accuracy of modeling the spatial distribution of gravity anomalies and provide reliable results for solving geophysical problems.
- Arseni, M., Voiculescu, M., Georgescu, L. P., Iticescu, C., & Rosu, A. (2019). Testing different interpolation methods based on single beam echosounder river surveying. Case study: Siret River. ISPRS International Journal of Geo-Information, 8(11), 507. https://doi.org/10.3390/ijgi8110507
- Bonvalot, S., Briais, A., Kuhn, M., Peyrefitte, A., Vales, N., Biancale, R., Gabalda, G., Moreaux, G., Reinquin, F. & Sarrailh, M. (2012). Global grids: World Gravity Map (WGM2012). Bureau Gravimetrique International. https://doi.org/10.18168/bgi.23
- Bureau Gravimétrique International. WGM2012 GLOBAL MODEL. URL: http://bgi.obs-mip.fr/data-products/outils/wgm2012-maps-visualizationextraction/
- Cao, X., Liu, Z., Hu, C., Song, X., Quaye, J. A., & Lu, N. (2024). Three-Dimensional Geological Modelling in Earth Science Research: An In-Depth Review and Perspective Analysis. Minerals, 14(7), 686. https://doi.org/10.3390/min14070686
- Ch, F., Bruinsma, S. L., Abrikosov, O., Lemoine, J. M., Schaller, T., Götze, H. J., Biancale, R. (2014). EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. https://doi.org/10.5880/icgem.2015.1
- Gilardoni, M., Reguzzoni, M., Sampietro, D. (2016). GECO: a global gravity model by locally combining GOCE data and EGM2008. Studia Geophysica et Geodaetica, 60(2), 228-247. https://doi.org/10.1007/s11200-015-1114-4
- Kay, M. and Dimitrakopoulos, R. (2000) Integrated Interpolation Methods for Geophysical Data: Applications to Mineral Exploration. Natural Resources Research, 9, 53-64. https://doi.org/10.1023/a:1010161813931
- Nabighian, M. N., Ander, M. E., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., ... & Ruder, M. E. (2005). Historical development of the gravity method in exploration. Geophysics, 70(6), 63ND-89ND. https://doi.org/10.1190/1.2133785
- Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of geophysical research: solid earth, 117(B4). https://doi.org/10.1029/2011JB008916
- Savchuk, S., Fedorchuk, A., & Marjańska, D. (2024). Modelling geoid height errors for local areas based on data of global models. Journal of Applied Geodesy. https://doi.org/10.1515/jag-2024-0054
- Sjöberg, L. E., & Bagherbandi, M. (2017). Gravity inversion and integration. Basel, Switzerland: Springer International Publishing AG. https://doi.org/10.1007/978-3-319-50298-4
- Zahorec, P., Papčo, J., Pašteka, R., Bielik, M., Bonvalot, S., Braitenberg, C., ... & Varga, M. (2021). The first pan-Alpine surface-gravity database, a modern compilation that crosses frontiers, Earth System Science Data Discussions, 2021, 1-72. https://doi.org/10.5194/essd-13-2165-2021
- Zingerle, P., Pail, R., Gruber, T., & Oikonomidou, X. (2020). The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7), 1-12. https://doi.org/10.1007/s00190-020-01398-0