The role of the tidal systems of global geoid models in the determination of heights using the GNSS leveling method

Authors:
1
Lviv Polytechnic National University

A number of factors can significantly affect the accuracy of height determination when applying the GNSS leveling method. In general, it is possible to distinguish those related to the process of GNSS observations and their post-processing, and those related to the selection of the geoid/quasi-geoid height model. This work focuses on aspects of GNSS leveling accuracy when choosing global geoid models. In particular, to better ensure accuracy, it is important to understand the significance of the heights tidal system selection of global geoid models. The purpose of the work is to analyze the influence of different tide systems of global geoid models on the accuracy of height determination by the GNSS leveling method. This paper considers the heights of global geoid models EGM08, EIGEN-6C4, GECO, and XGM2019e_2159 of high degree and order calculated in the tide systems of “tide-free”, “mean-tide”, “zero-tide”. The analysis of the actual accuracy of the geoid heights was carried out on the basis of the standard and root mean square deviations of the heights differences of global geoid models in the corresponding tidal systems in relation to the GNSS leveling data. GNSS leveling data were obtained at 14 high-precision geometric leveling points of accuracy class 1-2, covering the central part of the Lviv region. Similarly, the accuracy of the geoid models was analyzed taking into account the differences of gravity anomalies concerning the high-resolution anomalies of the WGM2012 model. Data presenting differences of height and gravitational anomalies allowed us to correct the height of the models according to the weighted average principle. In addition, corresponding statistics were calculated for them. The conducted analysis shows that for the EGM08 model, the system of “mean-tide” is optimal with an accuracy assessment at the level of σ=2-3 cm and m=4 cm. For the EIGEN-6C4 model, it is best to use the “zero-tide” system which will ensure accuracy up to 4-5 cm. The accuracy of the EGM08 and EIGEN-6C4 models is confirmed by the statistical characteristics analysis results of the gravity anomaly differences. The GECO and XGM2019e_2159 models give ambiguous results within 3-9 cm by both parameters and in all tidal systems. Only after correction of the heights, their accuracy is 2-5 cm. Considering the optimal tidal system, the heights of the EGM08 and EIGEN-6C4 models can provide an accuracy of 1-3 cm after the correction by weighting coefficients.

  1. Bureau Gravimétrique International. WGM2012 GLOBAL MODEL. URL: http://bgi.obs-mip.fr/data-products/outils/wgm2012-maps-visualizationextraction/
  2. Ch, F., Bruinsma, S. L., Abrikosov, O., Lemoine, J. M., Schaller, T., Götze, H. J., Biancale, R. (2014). EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services.  https://doi.org/10.5880/icgem.2015.1
  3. Denker H. (2015). A new European gravimetric (quasi)geoid EGG2015. Poster presented at XXVI General Assembly of the International Union of Geodesy and Geophysics (IUGG), Earth and Environmental Sciences for Future Generations, 22 June – 2 July 2015, Prague, Czech Republic. URL: https://www.isgeoid.polimi.it/Geoid/Europe/IUGG_2015_EGG2015.pdf
  4. Ellmann, A., Kaminskis, J., Parseliunas, E., Jürgenson, H., & Oja, T. (2009). Evaluation results of the Earth Gravitational Model EGM08 over the Baltic countries. Newton's Bulletin, 4, 110-121. URL: https://www.isgeoid.polimi.it/Newton/Newton_4/Report_EA2_Baltic.pdf
  5. Fedorchuk, A. (2022). The Potential Application of the GNSS Leveling Method in Local Areas by Means of Sector Analysis. Geomatics and Environmental Engineering, 16(3), 41–55.  https://doi.org/ 10.7494/geom.2022.16.3.41
  6. Gilardoni, M., Reguzzoni, M., Sampietro, D. (2016). GECO: a global gravity model by locally combining GOCE data and EGM2008. Studia Geophysica et Geodaetica, 60(2), 228-247.  https://doi.org/10.1007/s11200-015-1114-4
  7. Gruber, T., Zingerle, P., Pail, R., Oikonomidou, X. (2019). High resolution gravity field models as global reference surface for heights. In Simposio SIRGAS Sistema de Referencia Geocentrico para las Americas and 2019 GGOS Days. URL: https://mediatum.ub.tum.de/doc/1523939/file.pdf
  8. IAG. Resolutions adopted by the International Association of Geodesy: (1984). The XVIIIth General Assembly, Bulletin géodésique. vol. 58, pp. 309–323. https://doi.org/10.1007/BF02519005
  9. International Centre for Global Earth Models (ICGEM). URL: http://icgem.gfz-potsdam.de/
  10. Kim, K. B., Yun, H. S., & Choi, H. J. (2020). Accuracy evaluation of geoid heights in the national control points of South Korea using high-degree geopotential model. Applied sciences, 10(4), 1466.  https://doi.org/10.3390/app10041466
  11. Kostelecky, J., Klokocník, J., Bucha, B., Bezdek, A., & Förste, C. (2015). Evaluation of gravity field model EIGEN-6C4 by means of various functions of gravity potential, and by GNSS/levelling. Geoinformatics Fce Ctu, 14(1), 7-28.  https://doi.org/10.14311/gi.14.1.1
  12. Krynski, J., & Kloch, G. (2009). Evaluation of the performance of the new EGM08 global geopotential model over Poland. Geoinformation Issues, 1(1), 7-17.  https://doi.org/10.34867/gi.2009.1
  13. Mäkinen, J. (2021). The permanent tide and the International Height Reference Frame IHRF. Journal of Geodesy, 95(9), 1-19.  https://doi.org/10.1007/s00190-021-01541-5
  14. Mäkinen, J., & Ihde, J. (2009). The permanent tide in height systems. In Observing our changing earth (pp. 81-87). Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-540-85426-5_10
  15. Moritz, H. (1980). Geodetic reference system 1980. Bulletin géodésique, 54(3), 395-405.  https://doi.org/10.1007/BF02521480
  16. Moritz, H. (2000). Geodetic Reference System 1980. Journal of Geodesy. vol. 74. pp. 128–133 https://doi.org/10.1007/s001900050278
  17. Odumosu, J. O., Onuigbo, I. C., Nwadialor, I. J., Elegbede, D., & Kemiki, O. A. (2017). Analysis of some factors that affect accuracy in long wavelength geoid determination using GrafLab. URI: http://repository.futminna.edu.ng:8080/jspui/handle/123456789/10381
  18. Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of geophysical research: solid earth, 117(B4).  https://doi.org/10.1029/2011JB008916
  19. Reguzzoni, M., Carrion, D., De Gaetani, C. I., Albertella, A., Rossi, L., Sona, G., ... & Sansó, F. (2021). Open access to regional geoid models: the International Service for the Geoid. Earth System Science Data, 13(4), 1653-1666.  https://doi.org/10.5194/essd-13-1653-2021
  20. Savchuk, S., Prodanets, I., & Fedorchuk, A. (2022). Application of the method of determination of coordinates according to GNSS-observations with binding to the network of active reference stations. Modern achievements of geodesic science and industry, I(43), 48-54.  https://doi.org/10.33841/1819-1339-1-43-48-54
  21. Vatrt, V. (1999). Methodology of testing geopotential models specified in different tide systems. Studia Geophysica et Geodaetica, 43(1), 73-77.  https://doi.org/10.1023/A:1023362109108
  22. Zingerle, P., Pail, R., Gruber, T., & Oikonomidou, X. (2020). The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7), 1-12.  https://doi.org/10.1007/s00190-020-01398-0